Бериллий щелочной металл. Бериллий, магний и щелочноземельные металлы — Гипермаркет знаний




К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.

Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.

Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.

В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

S-элементы 2 группы

ОБЩАЯ ХАРАКТЕРИСТИКА. К щелочноземельным металлам обычно

относят кальций, стронций и барий, поскольку их оксиды (земли) при

растворении в воде дают щелочи. Оксиды бериллия и магния в воде не

растворяются. Иногда и все металлы из 2А группы называют

щелочноземельными. На внешнем уровне атомы имеют 2 электрона (Be -

2s2, Mg - 3s2, Ca - 4s2 и т.д.).

При возбуждении s-электроны переходят на р-

подуровень и тогда возможно образование двух связей

(валентность равна двум). В соединениях металлы

проявляют степень окисления +2.

1. Щелочноземельные металлы сильные восстановители, хотя и

уступают щелочным металлам. Восстановительные свойства растут

сверху вниз, что совпадает с увеличением атомных радиусов (Be - 0,113

нм, Ba - 0,221 нм) и ослаблением связи электронов с ядром. Так, Ве и Mg

разлагают воду очень медленно, а Са, Sr, Ва бурно.

2. На воздухе Be и Mg покрываются защитной пленкой и сгорают при

только при поджигании, тогда как Ca, Sr, Ba самовоспламеняются при

контакте с воздухом.

3. Оксиды Be и Mg нерастворимы в воде и гидроксиды Be и Mg

получают косвенным путем, тогда как оксиды Ca, Sr, Ba cоединяясь с

водой, образуют гидроксиды. Оксид бериллия имеет амфотерные

свойства, остальные оксиды - основные свойства.

4. Be(OH)2 и Mg(OH)2 почти нерастворимы в воде (0,02 и 2 мг на 100 г).

Растворимость Ca(OH)2, Sr(OH)2, Ba(OH)2 составляет 0,1, 0,7 и 3,4 г. При

этом Be(OH)2 - амфотерный гидроксид, Mg(0H)2, - слабое основание,

Ca(OH)2, Sr(OH)2, Ba(0H)2 - сильные основания.

5. Галогениды хорошо растворимы в воде, но растворимость

сульфатов падает сверху вниз. Так, в 100 г воды растворяется 35,6 г

MgSO4, но только 0,2 г CaSO4, 0,01 г SrSO4 и 0,0002 г BaSO4.

6. Растворимость карбонатов снижается сверху вниз. MgCO3 - 0,06 г на

100 г воды, ВаСО3 всего - 0,002г. Термическая устойчивость карбонатов

растет сверху вниз: Если BeCO3 разлагается при 100о, MgCO3 - при 350о, то

СаСО3 - при 900о, SrCO3 - 1290о BaCO3 - при 1350о.

БЕРИЛЛИЙ - имеет более выраженные ковалентные

(неметаллические) свойства, чем другие элементы 2А группы. И сам

бериллий, его оксид и гидроксид имеют амфотерные свойства.

Ве + 2НСl = BeCl2 + H2 Вe + 2KOH + 2H2O = K2 + H2

BeO + 2HCl = BeCl2 + H2O BeO + 2KOH + H2O = K2

Be(OH)2 + 2HCl = BeCl2 + 2H2O Be(OH)2 + 2KOH = K2

Магний и кальций

ОБЩИЕ СВЕДЕНИЯ . Содержание магния и кальция в земной коре 2,1

и 3,6%. Минералы магния - MgCO3. CaCO3 - доломит, MgCO3 - магнезит, KCl .

6H2O - карналлит; MgSO4

KCl . 3H2O - каинит. Минералы кальция :

CaCO3 - кальцит (известняк, мел, мрамор), СaSO4

2H2O - гипс, Ca3(PO4)2 -

фосфорит, 3Ca3(PO4)2

CaF2 - апатит.

Магний и кальций - серебристо-белые металлы плавятся при 651 и

851о С. Кальций и его соли окрашивают пламя в кирпично-красный цвет.

ПОЛУЧЕНИЕ. Кальций и магний получают электролизом расплава

хлорида кальция или хлорида магния или алюмотермическим методом.

электролиз to

СaCl2  Ca + Cl2 4CaO + 2Al = 3Ca + CaO . Al2O3

Химические свойства кальция и магния.

В соединениях оба металла проявляют степень окисления +2. При

этом кальций более активен, чем магний, хотя и уступает стронцию и

1. Взаимодействие с кислородом идет с воспламенением и

выделением тепла и света.

Mg + O2 = 2MgO;  2Ca + O2 = 2CaO

2. Взаимодействие с галогенами. Фтор соединяется с Са и Mg

непосредственно, остальные галогены только при нагревании.

Mg + Cl2 = MgCl2; Ca + Br2 = CaBr2

3. При нагревании Са и Mg образует с водородом гидриды, которые

легко гидролизуются и окисляются. to to

Mg + Н2 = MgН2 ; Ca + Н2 = CaН2

СаН2 + 2Н2О = Са(ОН)2 + 2H2; CaН2 + О2 = СаО + Н2О

4. При нагревании оба металла взаимодействуют с другими

неметаллми:

Mg + S = MgS; 3Ca + N2 = Ca3N2; 3Mg + 2P = Mg3P2

3Ca + 2As = Mg3As2; Ca + 2C = CaC2; Mg + 2C = MgC2

Нитриды, сульфиды и карбиды кальция и магния подвержены

гидролизу:

Ca3N2 + 6H2O = 3Ca(OH)2 + 2NH3 ; CaC2 + 2H2O = Ca(OH)2 +

5. Бериллий и магний с водой и спиртами взаимодействуют только

при нагревании, тогда как кальций бурно вытесняет из них

Mg + H2O = MgO + H2; Ca + 2H2O = Ca(OH)2 + H2

Са + 2С2Н5ОН = Са(С2Н5О)2 + Н2

6. Магний и кальций отнимают кислород у оксидов менее активных

металлов.

CuO + Mg = Cu + MgO;  MoO3 + 3Ca = Mo + 3CaO

7. Из кислот-неокислителей магний и кальций вытесняют водород,

а кислоты-окислители эти металлы глубоко восстанавливают.

Mg + 2HCl = MgCl2 + H2; Ca + 2CH3COOH = Ca(CH3COO)2 + H2

3Mg + 4H2SO4к = 3MgSO4 + S + 4H2O; 4Ca + 10HNO3к= 4Ca(NO3)2 + N2O

4Ca + 10HNO3оч.разб. = 4Ca(NO3)2 + NH4NO3 + 3H2O

8. Кальций и магний легко окисляются растворами окислителей:

5Mg + 2KMnO4 + 8H2SO4 = 5MgSO4 + 2MnSO4 + K2SO4 + 8H2O

Са + K2Cr2O7 + 7H2SO4 = 3СаSO4 + Cr2(SO4)3 + K2SO4 + 7H2O

Оксиды гидроксиды кальция и магния.

Оксид магния - MgO - белый порошок, тугоплавкий (огнеупор),

нерастворимый в воде и кислотах и только аморфная форма оксида

магния медленно взаимодействует с кислотами. Получают оксид магния

нагреванием гидроксида магния.

MgO (аморфный) + 2HCl = MgCl2 + H2O;  Mg(OH)2 = MgO + H2O

Гидроксид магния - Mg(OH)2 - малорастворимое и

малодиссоциирующее основание. Получают действием щелочей на соли

магния. При пропускании диоксида углерода через его раствор выпадает

осадок карбоната магния, который в дальнейшем растворяется при

избытке СО2.

MgCl2 + 2KOH = Mg(OH)2 + 2KCl MgCl2 + 2NH4OH = Mg(OH)2 + 2NH4Cl

Mg(OH)2 + CO2 = MgCO3 + H2O MgCO3 + CO2 + H2O = Mg(HCO3)2

Оксид кальция - СаО - негашенная известь. Белое тугоплавкое

вещество с выраженными основными свойствами (образует с водой

гидроксид, реагирует с кислотными оксидами, кислотами и амфотерными

оксидами).

СаО + Н2О = Са(ОН)2 СаО + СО2 = СаСО3 СаО + 2НCl = CaCl2

СaO + Al2O3 = Ca(AlO2)2 CaO + Fe2O3 = Ca(FeO2)2

Получают обжигом известняка или восстановлением сульфата

СаСО3 = СаО + СО2; 2СаSO4 + 2C = 2CaO + 2SO2 + CO2

Гидроксид кальция Са(ОН)2 - гашеная известь (пушенка), получают

при взаимодействии оксида кальция с водой. Сильное основание, кроме

того растворяет некоторые неметаллы и амфотерные металлы.

Са(ОН)2 + 2HCl = CaCl2 + 2H2O Ca(OH)2 + SO3 = CaSO4 +

3Ca(OH)2 2FeCl3 = 2Fe(OH)3+ 3CaCl2 2NH4Cl + Ca(OH)2 = CaCl2 + NH3

2Са(ОН)2 + Сl2 = CaCl2 + Ca(ClO)2 + 2H2O Са(ОН)2 + 2Al + 2H2O =

Гашеная известь входит в состав строительного раствора.

Затвердение основано на реакциях:

Ca(OH)2 + СO2 = CaCO3 + H2O;  Ca(OH)2 + SiO2 = CaSiO3 + H2O

из воздуха песок

При пропускании диоксида углерода через раствор Ca(OH)2

(известковую воду) выпадает осадок карбоната кальция, который при

дальнейшем пропускании СО2 растворяется вследствие образования

растворимого гидрокарбоната кальция.

Са(ОН)2 + СО2 = СаСО3 + Н2О;  СаСО3 + СО2 + Н2О = Са(НСО3)2

МЕТАЛЛЫ II ГРУППЫ ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ, МАГНИЙ И БЕРИЛЛИЙ Щелочноземельными являются не все элементы IIА группы, а только начиная с кальция и вниз по группе. Оксиды этих элементов («земли» - по старинной терминологии) взаимодействуют с

ПОЛОЖЕНИЕ В ПСХЭ И СТРОЕНИЕ АТОМОВ Rатома Металлические Восстановительн ые свойства увеличиваются Щелочноземельные металлы Основный характер (искл. Ве – амфотерный) Формула высшего оксида высшего гидроксида …ns 2 с. о. +2 RO R(OH)

ОБЩАЯ ХАРАКТЕРИСТИКА Be Mg Ca Sr Ba Ra Радиус атома и Заряд ядра ув-тся Максимальна я степень Металлические и окисления восстановительные +2 Щелочноземельные металлы св-ва ув-ся. Основные св-ва Оксидов и Гидроксидов ув-ся. Металлы химически активные, в природе встречаются только в виде соединений 2 Взаимодействуют с водой образуя щелочи. n S

ФИЗИЧЕСКИЕ СВОЙСТВА МАГНИЯ, БЕРИЛЛИЯ И ЩЕЛОЧНО-ЗЕМЕЛЬНЫЕ МЕТАЛЛОВ серебристо-белые вещества. ковкие и пластичные, довольно мягкие, хотя тверже щелочных. Бериллий отличается значительной твердостью и ножом преимущественно не режутся (исключение - стронций). и хрупкостью, барий при резком ударе раскалывается. Металлическая кристаллическая решетка обуславливает их высокую тепло- и электропроводность. Металлы имеют температуры плавления и кипения выше, чем у щелочных металлов. Бериллий и магний покрыты прочной оксидной пленкой и не изменяются на воздухе. Щелочно-земельные металлы очень активны, их хранят в запаянных ампулах, под слоем вазелинового масла или

Физические свойства металлов II А группы плотность Тплавл 1285 850 651 1. 85 770 710 960 3. 76 2. 63 1. 74 Be 6 1. 54 Mg Ca Sr Ba Ra

й и Мягки ый ичн пласт Mg При комн а темп тной ерату покры ре тонча т йш оксид ей н плён ой кой Те м пл пе ав ра 65 ле тур 0 ни а С я ФИЗИЧЕСКИЕ СВОЙСТВА

ФИЗИЧЕСКИЕ СВОЙСТВА Be Чист плас ый тичен, но незна чител ьные прим дела еси ют хрупк его им Т ки уго й п t = м ла 1 ета в 28 л 7 л C тлол све, Метал цвета о серог тый покры ей йш тонча ой н оксид й о плёнк

Лёгкий, беловатосерый, Пластичный металл Ca Температура плавления С Из –за достаточной твёрдости невозможно резать ножом, как щелочные металлы

ПОЛУЧЕНИЕ 1. Барий получают восстановлением оксида: 3 Ba. O + 2 Al = 3 Ba + Al 2 O 3 2. Остальные металлы получают электролизом расплавов хлоридов: Ca. Cl 2 = Ca + Cl 2 (эл. ток)

ХИМИЧЕСКИЕ СВОЙСТВА - ВОССТАНОВИТЕЛИ 1. С неметаллами образуют бинарные соединения Реакция с кислородом. Все металлы образуют оксиды RO, барий может-пероксид – Ba. O 2: Ba + O 2 = Ba. O 2 пероксид Ca + O 2 = Ca. O Ba + S = Ba. S сульфид Ca + H 2 = Ca. H 2 гидрид Ca + 2 C = Ca. C 2 карбид 3 Ba + 2 P = Ba 3 P 2 фосфид Ca + N 2 = Ca 3 N 2 нитрид Ca + Cl 2 = Ca. Cl 2 хлорид

2. Реакция с водой. Образуют щелочи. В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. Ca + 2 H 2 O = Ca(OH)2 + H 2 (при о. у.) Mg + H 2 O = Mg(OH)2 + H 2 (при t)

3. Все металлы растворяются в кислотах: Ca + 2 HCl = Ca. Cl 2 + H 2 4. С особыми кислотами (Be похож на Al) Сa + HNO 3(к) = N 2 O + Ca(NO 3)2 + H 2 O Ca + HNO 3(р) = NH 4 NO 3 + Ca(NO 3)2 + H 2 O (N 2 O, NH 3) Ca + H 2 SO 4(к) = H 2 S + Ca. SO 4 + H 2 O Be с азотной кислотой пассивирует, реакция на холоду не идет в независимости от концентрации кислоты

5. Сa, Mg с оксидами тяжелых металлов Восстанавливают металлы из их оксидов - пирометаллургия (кальцетермия, магнетермия) Ca + Cu. O = Cu + Ca. O (t) 2 Mg + Ti. O 2 → 2 Mg. O + Ti 5 Ca + V 2 O 5 → 5 Ca. O + 2 V 2 Mg + CO 2 → 2 Mg. O + C горение Mg в углекислом газе

6. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета: Ca 2+ - темно-оранжевый Sr 2+- темно-красный Ba 2+ - светло-зеленый

ХИМИЧЕСКИЕ СВОЙСТВА ЩЕЛОЧНЫХ МЕТАЛЛОВ ОБОБЩЕНИЕ М Е + Cl 2 Хлорид фосфид Т + P + H 2 + N 2 нитрид А + S Сульфид Л + O 2 Оксид + C карбид Л Ca, Sr, Ba + Н 2 О Ы + кислоты Гидрид Щелочь + Н 2 соли и водород

ВЗАИМОДЕЙСТВИЕ С ВОДОЙ Закончите уравнения реакций, назовите продукты реакций и составте о-в реакции. Ca + H 2 O Sr + H 2 O Ba + Н 2 О

ОКСИДЫ МЕТАЛЛОВ II ГРУППЫ общая формула оксидов - Me. O и пероксидов - Me. O 2 Оксиды металлов IIA группы являются основными оксидами, Ве. О проявляет амфотерные свойства.

СОЕДИНЕНИЯ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ Оксиды щелочноземельных металлов Общая МО формула Тип и класс Основный оксид веществ Физические Твердые кристаллические свойства вещества белого цвета Химические МО + Н 2 О = свойства МО + кислотный оксид = МО + кислота =

ПОЛУЧЕНИЕ Окисление металлов (кроме Ba, который образует пероксид) Ca + O 2 = Ca. O Термическое разложение нитрата магния или нерастворимых карбонатов Ca. CO 3 → Ca. O + CO 2 t˚C 2 Mg(NO 3)2 → 2 Mg. O + 4 NO 2 + O 2 t˚C

ХИМИЧЕСКИЕ СВОЙСТВА 1. С кислотным оксидом 3 Ca. O + P 2 O 5 = Ca 3(PO 4)2 2. С водой Ca. O + H 2 O = Ca(OH)2 (кроме Ве. О) 3. С кислотой Ca. O + HCl = Ca. Cl 2 + H 2 O 4. С амфотерным оксидом Ca. O + Zn. O = Ca. Zn. O 2

ОСОБЫЕ СВОЙСТВА ОКСИДОВ 2 Ba. O + O 2 = 2 Ba. O 2 пероксид, только для бария Ве. О проявляет амфотерные св-ва взаимодействует со щелочами: Be. O + 2 Na. OH = Na 2 Be. O 2 + H 2 O сплав Be. O + 2 Na. OH + H 2 O = Na 2 раствор Be. O + Na 2 CO 3 = Na 2 Be. O 2 + CO 2 сплав

Соединения щелочноземельных металлов ГИДРОКСИДЫ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ Общая формула М(ОН)2 Тип и класс веществ Щелочи Физические свойства Химические свойства Твердые кристаллические вещества, белого цвета с ионной кристаллической решеткой М(ОН)2 + соль = М(ОН)2 + кислотный оксид =

ГИДРОКСИДЫ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ - ЩЕЛОЧИ . Гидроксиды R(OH)2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH)2 – нерастворим в воде, растворяется в щелочах). Основность R(OH)2 увеличивается с увеличением атомного номера: Be(OH)2 – амфотерный гидроксид Mg(OH)2 – слабое основание Са(OH)2 - щелочь остальные гидроксиды - сильные основания (щелочи).

ПОЛУЧЕНИЕ ГИДРОКСИДОВ 1. Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2 H 2 O Ba(OH)2 + H 2 Ca. O + H 2 O Ca(OH)2 2. Электролиз растворов солей Ca. Cl 2 + H 2 O Ca(OH)2 + Cl 2 + H 2 эл. ток 3. Be(OH)2 и Mg(OH)2 получают с помощью обменных реакций Be. Cl 2 + 2 Na. OH = 2 Na. Cl + Be(OH)2

ХИМИЧЕСКИЕ СВОЙСТВА 1. изменяют цвет индикатора Лакмус – синий Метилоранж – желтый Фенолфталеин - малиновый Гидроксиды щелочноземельных металлов в воде диссоциируют на

ХИМИЧЕСКИЕ СВОЙСТВА 2. Реакции с кислотными оксидами: Ca(OH)2 + SO 2 Ca. SO 3 + H 2 O Ba(OH)2 + CO 2 Ba. CO 3 + H 2 O Ca(OH)2 +2 CO 2 CA(HCO 3)2 Ca(OH)2 + CO 2 = Ca. CO 3 + H 2 O Качественная реакция на углекислый газ 3. Реакции с кислотами (нейтрализация) Ba(OH)2 + 2 HNO 3 Ba(NO 3)2 + 2 H 2 O 4. Реакции обмена с солями: Ba(OH)2 + K 2 SO 4 Ba. SO 4+ 2 KOH

ХИМИЧЕСКИЕ СВОЙСТВА 5. C амфотерными металлами, оксидами, гидроксидами Ca(OH)2 + Bе(OH)2 Ca (раствор) Ca(OH)2 + Be(OH)2 Ca. Be. O 2 + H 2 O (сплав) Ca(OH)2 + Be. O + H 2 O Ca (раствор) Ca(OH)2 + Be. O Ca. Be. O 2 + H 2 O (сплав) Ca(OH)2 + Be Ca + H 2 тетрагидроксобериллиат кальция

ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ Сa. O – негашеная известь Ca(OH)2 –гашенная известь (известковая вода, молоко) Ca. CO 3 – мел, мрамор, известняк Ca. SO 4 * 2 H 2 O -- гипс Ca(Cl. O)Cl – хлорная известь

СОЛИ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ Растворимые соли Be и Ba – токсичны, ядовиты! Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями: Сульфат бария – белый осадок, нерастворимый в минеральных кислотами

КАЛЬЦИЙ В ПРИРОДЕ Кальциевые горные породы – известняк, мрамор, мел. Вспомните формулу этих горных пород. В чем их отличие?

МЕЛ, ИЗВЕСТНЯК, МРАМОР НЕ РАСТВОРЯЮТСЯ В ЧИСТОЙ ВОДЕ, НО РАСТВОРИМЫ В КИСЛЫХ РАСТВОРАХ, ДАЖЕ ТАКИХ СЛАБЫХ, КАК ПРИРОДНАЯ ВОДА. При просачивании воды с поверхности земли через залежи известняка происходят процессы: 1. образуются провалы, если порода залегает под тонким слоем почвы

2. Если породы залегают на большой глубине – возникают подземные карстовые пещеры. Как называются отложения, свисающие в виде гигантских сосулек со свода пещеры? А растущие навстречу им со дна пещеры колонны? Какие химические реакции при этом происходят?

ИЗВЕСТНЯК И МРАМОР ИСПОЛЬЗУЮТ В АРХИТЕКТУРЕ И СКУЛЬПТУРЕ При воздействии кислотных дождей строения разрушаются. Какие реакции при этом происходят?

КАЛЬЦИЙ В ОРГАНИЗМЕ ЧЕЛОВЕКА Минерал, содержащий фосфат кальция, играет важную роль в человеческом организме. Он строительным материалом костей человека, входит в состав эмали. В сочетании с другими минералами поддерживает работу сердечно-сосудистой системы, предотвращает возникновение рака толстой кишки, регулирует функции нервов, способствует снижению холестерина. В организме взрослого человека содержатся более 1 кг кальция в виде соединения Ca 3(PO 4)2.

Ca. SO 4 -сульфат кальция, встречается в природе в виде минерала гипса Ca. SO 4*2 H 2 O, представляющего собой кристаллогидрат. Используется в строительстве, медицине для наложения неподвижных гипсовых повязок, для получения слепков. Для этого применяют полуводный гипс 2 Ca. SO 4 -алебастр.

БЕРИЛЛИЙ Бериллий сходствует с алюминием и магнием…Получил своё название потому, что находится в минерале берилле. Металл называют также глицием от греческого слова «сладкий» , потому что соли его имеют сладковатый вкус. Д. И. Менделеев

СОЕДИНЕНИЯ БЕРИЛЛИЯ В ПРИРОДЕ Хризоберилл Be. Al 2 O 4 Изумруд Аквамарин Александрит

«Изумруд капризный, как женщина встречается совсем не там, где его ищут» Благодаря насыщенному зелёному цвету и твёрдости очень популярен у ювелиров, чудесная окраска вызвана наличием ионов хрома или ванадия. «Кажется, что если вглядеться в аквамарин, то увидишь тихое море с водой цвета звёзд» К. Г. Паустовский Такой цвет ему придаёт небольшая примесь двухвалентного железа

МАГНИЙ В ПРИРОДЕ Магний входит в состав активного центра зелёного пигмента растений -хлорофилла Автомобильная, авиационная и ракетная промышленность Магналий -твёрдый и прочный сплав с алюминием - 30 % Mg с добавками цинка,

МАГНИЙ В МЕДИЦИНЕ В медицине карбонат магния и окись магния применяют в качестве средств нейтрализующих соляную кислоту желудка и как легкие слабительные (Гастал, Ренни, Алмагель). Сульфат магния («английская соль») применяется в качестве слабительного, желчегонного и болеутоляющего средства при спазмах желчного пузыря. Раствор сернокислой магнезии вводят в качестве противосудорожного средства при эпилепсии и в качестве антиспастического лекарства при задержке мочеиспускания, бронхиальной астме, гипертонической болезни. органические соли магния используют при изготовлении БАД и лекарственных препаратов с широким спектром лечебно-профилактического действия, таких как

ЖЕСТКОСТЬ ВОДЫ Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»). Потребление жёсткой или мягкой воды обычно не является опасным для здоровья, есть данные о том, что высокая жёсткость способствует образованию мочевых камней, а низкая - незначительно увеличивает риск сердечно-сосудистых заболеваний. Вкус природной

ЖЕСТКОСТЬ ВОДЫ Жёсткая вода при умывании сушит кожу, в ней плохо образуется пена при использовании мыла. Использование жёсткой воды вызывает появление осадка (накипи) на стенках котлов, в трубах и т. п. В то же время, использование слишком мягкой воды может приводить к коррозии труб. Жёсткость природных вод может варьироваться в довольно широких пределах и в течение года непостоянна. Увеличивается жёсткость из-за испарения воды, уменьшается в сезон дождей, а также в период таяния снега и льда.

ЖЕСТКОСТЬ ВОДЫ Виды жесткости воды Присутствующие ионы Способы устранения жесткости воды Временная (карбонатная) Ca(2+), Mg(2+) HCO 3(-) 1. Кипячение 2. Добавление соды или Са(ОН)2 Постоянная Ca(2+), Mg(2+) SO 4(2 -) 1. Добавление соды. 2. Использование катионообменников Общая Ca(2+), Mg(2+), HCO 3(-), Cl(-) SO 4(2 -) Сочетание всех вышеуказанных способов.

СТРОНЦИЙ В ПРИРОДЕ Класс Саркодовые – радиолярии, обладают радикально расположенными псевдоподиями. Минеральный скелет, состоящий из кремнезёма или сульфата стронция, принимает форму правильных геометрических фигур (шаров, многогранников, колец), состоящих из отдельных игл.

ПРИМЕНЕНИЕ СОЛЕЙ СТРОНЦИЯ Как коллекционный минерал целестин ценится высоко, но практически не используется в ювелирном деле из-за своей низкой твердости и высокой хрупкости. Характерны образцы целестина голубого, светло-голубого, серо-голубого и чуть голубоватого цветов; целестин может быть и бесцветным, а также белым, желтоватым, синеватозеленым, красноватым, коричневым, порой еле просвечивающим, иногда – с зональной окраской.

ПРИМЕНЕНИЕ СОЛЕЙ СТРОНЦИЯ Соединения стронция использовались в пиротехнике; стоит бросить щепотку соли стронция в пламя – и оно окрасится в красный цвет. Все красные фейерверки и огни сигнальных ракет – все это благодаря стронцию. Соединения стронция используются в стекольной, керамической промышленности для получения глазированных поверхностей,

ТАЙНЫ ЦЕЛЕСТИНА Герр Хайнеман был доволен своей жизнью. Дела его шли хорошо, даже очень хорошо, если сравнить со многими другими эмигрантами, переехавшими в Соединенные Штаты. Его винный заводик на красивом озерном острове процветал, и вот, понадобилось сделать небольшой колодец для нужд производства. Со вчерашнего дня этим занимались его помощники, долбили породу. А сегодня один из них прибежал, мол, лучше ему взглянуть самому. Эх, все приходится делать самому. Герр Хайнеман спустился в подвал, где шли работы. - Ну, что тут у вас? - Вот, смотрите, мистер, долбили камень да наткнулись на пустоту… - Дайте фонарь. Герр Хайнеман спустился в яму в породе – результат работы целого дня. На дне ее и вправду зияла дыра. Он наклонился и посветил фонарем внутрь. И не поверил своим глазам: свет фонаря выхватил стенки обширной пещеры, покрытые огромными голубовато-белыми кристаллами. Герр Хайнеман уже было решил, что это подземная сокровищница троллей из сказок его родины, но ведь в США нет немецких троллей. Герр Хайнеман захихикал, поражаясь своей логике.

ГЕНЕТИЧЕСКИЙ РЯД КАЛЬЦИЯ Са. О Са(ОН) 2 Са. СО 3 Са(НСО 3)2 Напишите уравнения реакций, при помощи которых можно осуществить превращения веществ.

ЦЕПОЧКА ПРЕВРАЩЕНИЙ Ca → Ca. O→ Ca. Cl 2→ Ca(OH)2 →Ca. CO 3 →Ca. O Для реакций составить ионные уравнения и ок-восстановительные балансы.

К семейству щёлочноземельных эле­ментов относят кальций, стронций, барий и радий. Д. И. Менделеев включал в это семей­ство и магний. Щёлочноземельными элементы именуются по той причине, что их гидроксиды, подобно гидро­ксидам щелочных металлов, раство­римы в воде, т. е. являются щелочами. «…Земельными же они названы пото­му, что в природе они встречаются в состоянии соединений, образующих нерастворимую массу земли, и сами в виде окисей RO имеют землистый вид», - пояснял Менделеев в «Основах химии».

Общая характеристика элементов II а группы

Металлы главной подгруппы II группы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами.

Легко отдают два валентных электрона, и во всех соединениях имеют степень окисления +2

Сильные восстановители

Активность металлов и их восстановительная способность увеличивается в ряду: Be–Mg–Ca–Sr–Ba

К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний

Бериллий по большинству свойств ближе к алюминию

Физические свойства простых веществ


Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.

Химические свойства щелочноземельных металлов + Be

1. Реакция с водой.

В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием щелочей:

Mg + 2H 2 O – t° → Mg(OH) 2 + H 2 ­

Ca + 2H 2 O → Ca(OH) 2 + H 2 ­

2. Реакция с кислородом.

Все металлы образуют оксиды RO, барий-пероксид – BaO 2:

2Mg + O 2 → 2MgO

Ba + O 2 → BaO 2

3. С другими неметаллами образуют бинарные соединения:

Be + Cl 2 → BeCl 2 (галогениды)

Ba + S → BaS (сульфиды)

3Mg + N 2 → Mg 3 N 2 (нитриды)

Ca + H 2 → CaH 2 (гидриды)

Ca + 2C → CaC 2 (карбиды)

3Ba + 2P → Ba 3 P 2 (фосфиды)

Бериллий и магний сравнительно медленно реагируют с неметаллами.

4. Все щелочноземельные металлы растворяются в кислотах:

Ca + 2HCl → CaCl 2 + H 2 ­

Mg + H 2 SO 4 (разб.) → MgSO 4 + H 2 ­

5. Бериллий растворяется в водных растворах щелочей:

Be + 2NaOH + 2H 2 O → Na 2 + H 2 ­

6. Летучие соединения щёлочноземельных металлов придают пламени характерный цвет:

соединения кальция - кирпично-красный, стронция - карминово-красный, а бария - желтовато-зелёный.

Бериллий, также как и литий, относится к числу s-элементов. Четвертый электрон, появляющийся в атоме Be, помещается на 2s-орбитали. Энергия ионизации бериллия выше, чем у лития, из-за большего заряда ядра. В сильных основаниях он образует ион-бериллат ВеО 2- 2 . Следовательно, бериллий ‑ металл, но его соединения обладают амфотерностью. Бериллий, хотя и металл, но значительно менее электроположительный, по сравнению с литием.

Высокой энергией ионизации атома бериллий заметно отличается от остальных элементов ПА-подгруппы (магния и щелочноземельных металлов). Его химия во многом сходна с химией алюминия (диагональное сходство). Таким образом, это элемент с наличием у его соединений амфотерных качеств, среди которых преобладают все же основные.

Электронная конфигурация Mg: 1s 2 2s 2 2p 6 3s 2 по сравнению с натрием имеет одну существенную особенность: двенадцатый электрон помещается на 2s-орбитали, где уже имеется 1е — .

Ионы магния и кальция ‑ незаменимые элементы жизнедеятельности любой клетки. Их соотношение в организме должно быть строго определённым. Ионы магния участвуют в деятельности ферментов (например, карбоксилазы), кальция – в построении скелета и обмена веществ. Повышение содержания кальция улучшает усвоение пищи. Кальций возбуждает и регулирует работу сердца. Его избыток резко усиливает деятельность сердца. Магний играет отчасти роль антагониста кальция. Введение ионов Mg 2+ под кожу вызывает наркоз без периода возбуждения, паралич мышц, нервов и сердца. Попадая в рану в форме металла, он вызывает долго незаживающие гнойные процессы. Оксид магния в лёгких вызывает так называемую литейную лихорадку. Частый контакт поверхности кожи с его соединениями приводит к дерматитам. Самые широко используемые в медицине соли кальция: сульфат СаSO 4 и хлорид CaCL 2 . Первый используется для гипсовых повязок, а второй применяется для внутривенных вливаний и как внутреннее средство. Он помогает бороться с отёками, воспалениями, аллергией, снимает спазмы сердечно-сосудистой системы, улучшает свертываемость крови.

Все соединения бария, кроме BaSO 4 , ядовиты. Вызывают менегоэнцефалит с поражением мозжечка, поражение гладких сердечных мышц, паралич, а в больших дозах – дегенеративные изменения печени. В малых же дозах соединения бария стимулируют деятельность костного мозга.

При введении в желудок соединений стронция наступает его расстройство, паралич, рвота; поражения по признакам сходны с поражениями от солей бария, но соли стронция менее токсичны. Особую тревогу вызывает появление в организме радиоактивного изотопа стронция 90 Sr. Он исключительно медленно выводится из организма, а его большой период полураспада и, следовательно, длительность действия могут служить причиной лучевой болезни.

Радий опасен для организма своим излучением и огромным периодом полураспада (Т 1/2 = 1617 лет). Первоначально после открытия и получения солей радия в более или менее чистом виде его стали использовать довольно широко для рентгеноскопии, лечения опухолей и некоторых тяжёлых заболеваний. Теперь с появлением других более доступных и дешевых материалов применение радия в медицине практически прекратилось. В некоторых случаях его используют для получения радона и как добавку в минеральные удобрения.

В атоме кальция завершается заполнение 4s-орбитали. Вместе с калием он образует пару s-элементов четвертого периода. Гидроксид кальция ‑ довольно сильное основание. У кальция - наименее активного из всех щелочноземельных металлов - характер связи в соединениях ионный.

По своим характеристикам стронций занимает промежуточное положение между кальцием и барием.

Свойства бария наиболее близки к свойствам щелочных металлов.

Бериллий и магний широко используют в сплавах. Бериллиевые бронзы – упругие сплавы меди с 0,5-3% бериллия; в авиационных сплавах (плотность 1,8) содержится 85-90% магния («электрон»). Бериллий отличается от остальных металлов IIА группы – не реагирует с водородом и водой, зато растворяется в щелочах, поскольку образует амфотерный гидроксид:

Be+H 2 O+2NaOH=Na 2 +H 2 .

Магний активно реагирует с азотом:

3 Mg + N 2 = Mg 3 N 2 .

В таблице приведена растворимость гидроксидов элементов II группы.

Традиционная техническая проблема – жесткость воды , связанная с наличием в ней ионов Mg 2+ и Ca 2+ . Из гидрокарбонатов и сульфатов на стенках нагревательных котлов и труб с горячей водой оседают карбонаты магния и кальция и сульфат кальция. Особенно мешают они работе лабораторных дистилляторов.

S-элементы в живом организме выполняют важную биологическую функцию. В таблице приведено их содержание.

Во внеклеточной жидкости содержится в 5 раз больше ионов натрия, чем внутри клеток. Изотонический раствор («физиологическая жидкость») содержит 0,9% хлорида натрия, его применяют для инъекций, промывания ран и глаз и т. п. Гипертонические растворы (3-10% хлорида натрия) используют как примочки при лечении гнойных ран («вытягивание» гноя). 98% ионов калия в организме находится внутри клеток и только 2% во внеклеточной жидкости. В день человеку нужно 2,5-5 г калия. В 100 г кураги содержится до 2 г калия. В 100 г жареной картошки – до 0,5 г калия. Во внутриклеточных ферментативных реакциях АТФ и АДФ участвуют в виде магниевых комплексов.

Ежедневно человеку требуется 300-400 мг магния. Он попадает в организм с хлебом (90 мг магния на 100 г хлеба), крупой (в 100 г овсяной крупы до 115 мг магния), орехами (до 230 мг магния на 100 г орехов). Кроме построения костей и зубов на основе гидроксилапатита Ca 10 (PO 4) 6 (OH) 2 , катионы кальция активно участвуют в свертывании крови, передаче нервных импульсов, сокращении мышц. В сутки взрослому человеку нужно потреблять около 1 г кальция. В 100 г твердых сыров содержится 750 мг кальция; в 100 г молока – 120 мг кальция; в 100 г капусты – до 50 мг.