Химическая кинетика и термодинамика. «Основы химической термодинамики, химической кинетики и равновесия» Основы химической термодинамики Термодинамика и кинетика химических реакций




Тема 3. Общие закономерности химических процессов.

Химическая термодинамика и кинетика

Введение

Центральным в химии является учение о превращении веществ, в том числе об энергетике и кинетике химических реакций. Усвоение этого учения позволяет предсказывать возможность и направление химических процессов, рассчитывать энергетические эффекты и энергозатраты, скорость получения и выход продуктов в реакции, воздействовать на скорость химических процессов, а также предупреждать нежелательные реакции в тех или иных устройствах, установках и приборах.

3.1. Химическая термодинамика и кинетика

Обмен энергией между изучаемой системой и внешней средой описывают законы, которые изучает термодина­мика. Применение законов термодинамики в химии по­зволяет решить вопрос о принципиальной возможности различных процессов, условиях их осуществления, опре­ делить степень превращения реагирующих веществ в хи­ мических реакциях и оценить их энергетику.

Химическая термодинамика , рассматривает взаимосвязи между работой и энергией применительно к химическим превращениям.

Тепловая и механическая энергия - алгебраические величины. Знаки величин Q и А в термодинамике рас­ сматриваются по отношению к системе. Энергия, получа­ емая системой, обозначается знаком « + », отданная си­ стемой - знаком « - ».

Переменные величины, определяющие состояние си­ стемы, называются параметрами состояния. Среди них в химии наиболее часто используются давление, темпера­тура, объем, состав системы. Состояние системы и про­ исходящие в ней изменения характеризуются также с по­мощью функций состояния, зависящих от параметров состояния и не зависящих от пути перехода системы из одного состояния в другое. К ним относятся внутренняя энергия, энтальпия, энтропия, изобарно-изотермический потенциал и др.

Процессы, протекающие при постоянном давлении,- изобарные, при постоянном объеме - изохорные, при по­стоянной температуре - изотермические. Большинство химических реакций протекают в открытых сосудах, т. е. при постоянном давлении, равном атмосферному.

Химическая кинетика изучает характеристики химического процесса, как скорость реакции и зависимость её от внешних условий.

3.2. Энергетика химических процессов

В процессе химической реакции происходит разрыв одних химических связей и образование новых. Этот про­цесс сопровождается выделением или поглощением тепло­ ты, света или другого вида энергии. Энергетические эф­ фекты реакций изучает наука термохимия. В термохимии пользуются термохимическими уравнениями реакций, ко торые учитывают:

    агрегатное состояние вещества;

    тепловой эффект реакции(Q).

В этих уравнениях часто используют дробные коэффи­циенты. Так, уравнения реакции образования 1 моля газо- образной воды записывается так:

Н 2(г) +1/2О 2(г) = Н 2 О (г) + 242 кДж (*)

Значок (г) указывает на то, что водород, кислород и вода находятся в газовой фазе. «+242 кДж» - означает, что в результате этой реакции выделяется столько теплоты при образовании 1 моль воды.

Важность учета агрегатного состояния связана с тем, что теплота образования жидкой воды больше на величину теплоты, которая выделяется при конденсации пара:

Н 2(г) +1/2О 2(г) = Н 2 О (ж) + 286 кДж (**)

Процесс конденсации:

Н 2 О (г) = Н 2 О (ж) + 44 кДж (***)

Кроме теплового эффекта, в термодинамике использу­ ют понятие "изменение теплосодержания" - энтальпии (запаса внутренней энергии) в процессе реакции (Н)

Экзотермические реакции: теплота выделяется Q > 0

запас внутренней энергии уменьшается Н<0

Эндотермические реакции: теплота поглощается Q < 0

запас внутренней энергии увеличивается Н>0.

Так, реакция (*) образования воды экзотермическая. Тепловой эффект реакции: Q = 242 кДж, Н = -242 кДж.

Энтальпия образования химических соединений

Стандартной энтальпией (теплотой) образования химического соединения  Н 0 f ,В,298 называют изменение энтальпии в процессе образования одного моля этого соединения, находящегося в стандартном состоянии(р=1 атм; Т=25 0 С), из простых веществ, также находящихся в стандартных состояниях и термодинамически устойчивых при данной температуре фазах и модификациях.

Стандартные энтальпии образования простых веществ принимают равными нулю, если их агрегатные состояния и модификации устойчивы при стандартных условиях.

Стандартные энтальпии образования веществ собраны и сведены в справочниках.

3.2. 1. Термохимические расчеты

Независимость теплоты химической реакции от пути процесса при p=const была установлена в первой половине XIXв. русским ученым Г.И. Гессом: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.



Для большинства реакций изменение теплового эффекта в пределах температур, имеющих практическое значение невелико. Поэтому в дальнейшем будут использоваться  Н 0 f ,В,298 и в расчетах считаться постоянными.

Следствие из закона Гесса тепловой эффект химической реакции равен сумме теплот (энтальпий) образования продуктов реакции за вычетом суммы теплот (энтальпий) образования исходных веществ .

Используя при термохимических расчетах следствие из закона Гесса, надо иметь в виду, что при алгебраическом суммировании следует учитывать стехиометрические коэффициенты в уравнении реакции.

Так, для уравнения реакции аА+вВ=сС+dD тепловой эффект  Н равен

Н=(с Н обр.С +d Н обр.D) – (а Н обр.А +в Н обр.В) (*)

Уравнение (*) позволяет определить как тепловой эффект реакции по известным энтальпиям образования веществ, участвующих в реакции, так и одну из энтальпий образования, если известны тепловой эффект реакции и все остальные энтальпии образования.

Теплота сгорания топлива

Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества
.

Пример: определить теплоту сгорания этанола С 2 Н 5 ОН (ж)

Если расчет ведется для
с образованием жидкой воды , то теплота сгорания называется высшей , если с образованием газообразной воды, то низшей . По умолчанию обычно имеют в виду высшую теплоту сгорания.

В технических расчетах используют удельную теплоту сгорания Q Т, которая равна количеству теплоты, выделяющейся при сгорании 1 кг жидкого или твердого вещества или 1м 3 газообразного вещества, тогда

Q Т = -  Н СТ  1000/М (для ж, тв.)

Q Т = –  Н СТ  1000/22,4 (для г.),

где М – масса моля вещества, 22,4 л – объем моля газа.

3.3. Химическое и фазовое равновесие

3.3.1. Химическое равновесие

Обратимые реакции - химические реакции, протекающие одновременно в двух противоположных направлениях.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1 ) равна скорости обратной реакции (V 2 ). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K 1 ) и обратной (K 2 ) реакций.

Для реакции mA + nB « pC + dD константа равновесия равна

K = K 1 / K 2 = ([C] p [D] d ) / ([A] m [B] n )

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

Способы смещения равновесия

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

V 1

A + Б

V 2

    Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

V 1

A + Б

; увеличение P приводит к V 1 > V 2

V 2

    Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)

V 1

A + Б

В + Q, то увеличение t ° C приводит к V 2 > V 1

V 2

V 1

A + Б

В - Q, то увеличение t ° C приводит к V 1 > V 2

V 2

    Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V 1 > V 2 .

    Катализаторы не влияют на положение равновесия.

3.3.2. Фазовые равновесия

Равновесие процесса перехода вещества из одной фазы в другую без изменения химического состава называется фазовым равновесием.

Примеры фазового равновесия:

Твердое вещество............Жидкость

Жидкость....................Пар

3.3.3. Скорость реакции и методы ее регулирования

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± (С 2 – С 1 ) / (t 2 - t 1 )= ± D С / D t

где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) – если скорость определяется по продукту реакции, знак (–) – по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.

Факторы, влияющие на скорость химических реакций

    Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

Примеры: Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.

Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

    Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.

Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . ® . . .

V = k [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

    Температура. При повышении температуры на каждые 10 ° C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:

(t 2 - t 1 ) / 10

Vt 2 / Vt 1

= g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g - температурный коэффициент данной реакции).

Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

k = A e –Ea/RT

где

A - постоянная, зависящая от природы реагирующих веществ;

R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции.

Экзотермическая реакция

Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.

Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

  1. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

3.3.4. Механизмы химических реакций, колебательные реакции

Классификация химических реакций

I . По числу и составу исходных веществ и продуктов реакции:

1) Реакции соединения - это реакции, в ходе которых из двух или нескольких веществ образуется одно вещество более сложного состава. Реакции соединения простых веществ всегда являются окислительно-восстановительными реакциями. В реакциях соединения могут участвовать и сложные вещества.

2) Реакции разложения - реакции, при протекании которых из одного сложного вещества образуются два или несколько более простых веществ.
Продуктами разложения исходного вещества могут быть как простые, так и сложные вещества.

Реакции разложения обычно протекают при нагревании веществ и являются эндотермическими реакциями. Как и реакции соединения, реакции разложения могут протекать с изменением или без изменения степеней окисления элементов;

3) Реакции замещения - это реакции между простыми и сложными веществами, при протекании которых атомы простого вещества замещают атомы одного из элементов в молекуле сложного вещества в результате реакции замещения образуются новое простое и новое сложное вещество.
Эти реакции почти всегда являются окислительно-восстановительными реакциями.

4) Реакции обмена - это реакции между двумя сложными веществами, молекулы которых обмениваются своими составными частями.
Реакции обмена всегда протекают без переноса электронов, т. е. не являются окислительно-восстановительными реакциями.

II . По признаку изменения степени окисления

1) Реакции, которые идут без изменения степени окисления - реакции нейтрализации

2) С изменением степени окисления

III . В зависимости от присутствия катализатора

1) Некаталитические (идут без присутствия катализатора);

2) Каталитические (идут с присутствием катализатора)

IV . По признаку теплового эффекта

1) Экзотермические (с выделением теплоты):

2) Эндотермические (с поглощением теплоты):

V . По признаку обратимости

1) Необратимые (протекают только в одном направлении):

2) Обратимые (протекающие одновременно в прямом и обратном направлении):

VI . По признаку однородности

1) Гомогенные (протекающие в однородной системе):

2) Гетерогенные (протекающие в неоднородной системе):

По механизму протекания все реакции можно подразделить на простые и сложные. Простые реакции протекают в одну стадию и называются одностадийными.

Сложные реакции идут либо последовательно (многостадийные реакции), либо параллельно, либо последовательно–параллельно.

В каждой стадии реакции может участвовать одна молекула (мономолекулярные реакции), две молекулы (бимолекулярные реакции) и три молекулы (тримолекулярные реакции).

Колебательные реакции - класс химических реакций, протекающих в колебательном режиме, при котором некоторые параметры реакции (цвет, концентрация компонентов, температура и др.) изменяются периодически, образуя сложную пространственно-временную структуру реакционной среды.


(Система бромат-малоновая кислота-церий реакция Белоусова-Жаботинского)

3.4. Катализ

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами .

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений.

При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии).

При гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях).

Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление " отрицательного катализа ").

1. Скорость химических реакций. Определение понятия. Факторы, влияющие на скорость химической реакции: концентрация реагента, давление, температура, присутствие катализатора. Закон действующих масс (ЗДМ) как основной закон химической кинетики. Константа скорости, ее физический смысл. Влияние на константу скорости реакции природы реагирующих веществ, температуры и присутствия катализатора.

Скорость гомогенной реакции - это величина, численно равная изменению молярной концентрации любого участника реакции в единицу времени.

Средняя скорость реакции v ср в интервале времени от t 1 до t 2 определяется соотношением:

Основные факторы, влияющие на скорость гомогенной химической реакции:

  • - природа реагирующих веществ;
  • - молярные концентрации реагентов;
  • - давление (если в реакции участвуют газы);
  • - температура;
  • - наличие катализатора.

Скорость гетерогенной реакции - это величина, численно равная изменению химического количества любого участника реакции в единицу времени на единице площади поверхности раздела фаз: .

По стадийности химические реакции подразделяются на простые (элементарные) и сложные. Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов.

Для элементарных реакций справедлив закон действующих масс: скорость элементарной химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для элементарной реакции аА + bB > ... скорость реакции, согласно закону действующих масс, выражается соотношением:

где с(А) и с(В) - молярные концентрации реагирующих веществ А и В; a и b - соответствующие стехиометрические коэффициенты; k - константа скорости данной реакции.

Для гетерогенных реакций в уравнение закона действующих масс входят концентрации не всех реагентов, а только газообразных или растворенных. Так, для реакции горения углерода:

С (к) + О 2 (г) > СО 2 (г)

уравнение скорости имеет вид: .

Физический смысл константы скорости - она численно равна скорости химической реакции при концентрациях реагирующих веществ, равных 1 моль/дм 3 .

Величина константы скорости гомогенной реакции зависит от природы реагирующих веществ, температуры и катализатора.

2. Влияние температуры на скорость химической реакции. Температурный коэффициент скорости химической реакции. Активные молекулы. Кривая распределения молекул по их кинетической энергии. Энергия активации. Соотношение величин энергии активации и энергии химической связи в исходных молекулах. Переходное состояние, или активированный комплекс. Энергия активации и тепловой эффект реакции (энергетическая схема). Зависимость температурного коэффициента скорости реакции от величины энергии активации.

При увеличении температуры скорость химической реакции обычно возрастает. Величина, показывающая во сколько раз увеличивается скорость реакции при увеличении температуры на 10 градусов (или, что то же самое, на 10 К), называется температурным коэффициентом скорости химической реакции (г):

где - значения скорости реакции соответственно при температурах Т 2 и Т 1 ; г - температурный коэффициент скорости реакции.

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость химической реакции увеличивается в 2 - 4 раза.

Более точное описание зависимости скорости реакции от температуры осуществимо в рамках теории активации Аррениуса. Согласно этой теории, химическая реакция может происходить при столкновении только активных частиц. Активными называются частицы, которые обладают определенной, характерной для данной реакции, энергией, необходимой для преодоления сил отталкивания, возникающих между электронными оболочками реагирующих частиц. Доля активных частиц возрастает при увеличении температуры.

Активированный комплекс - это промежуточная неустойчивая группировка, образующаяся при столкновении активных частиц и находящаяся в состоянии перераспределения связей. При распаде активированного комплекса образуются продукты реакции.

Энергия активации Е а равна разности между средней энергией реагирующих частиц и энергией активированного комплекса.

Для большинства химических реакций энергия активации меньше энергии диссоциации наименее прочных связей в молекулах реагирующих веществ.

В теории активации влияние температуры на скорость химической реакции описывается уравнением Аррениуса для константы скорости химической реакции:

где А - постоянный множитель, не зависящий от температуры, определяющийся природой реагирующих веществ; е - основание натурального логарифма; Е а - энергия активации; R - молярная газовая постоянная.

Как следует из уравнения Аррениуса, константа скорости реакции тем больше, чем меньше энергия активации. Даже небольшое снижение энергии активации (например, при внесении катализатора) приводит к заметному возрастанию скорости реакции.

По уравнению Аррениуса, увеличение температуры приводит к увеличению константы скорости химической реакции. Чем меньше величина Е а, тем заметнее влияние температуры на скорость реакции и, значит, тем больше температурный коэффициент скорости реакции.

3. Влияние катализатора на скорость химической реакции. Гомогенный и гетерогенный катализ. Элементы теории гомогенного катализа. Теория промежуточных соединений. Элементы теории гетерогенного катализа. Активные центры и их роль в гетерогенном катализе. Понятие об адсорбции. Влияние катализатора на энергию активации химической реакции. Катализ в природе, промышленности, технике. Биохимический катализ. Ферменты.

Катализом называется изменение скорости химической реакции под действием веществ, количество и природа которых после завершения реакции остаются такими же, как и до реакции.

Катализатор - это вещество, изменяющее скорость химической реакции, но остающееся химически неизменным.

Положительный катализатор ускоряет реакцию; отрицательный катализатор, или ингибитор, замедляет реакцию.

В большинстве случаев действие катализатора объясняется тем, что он снижает энергию активации реакции. Каждый из промежуточных процессов с участием катализатора протекает с меньшей энергией активации, чем некатализируемая реакция.

При гомогенном катализе катализатор и реагирующие вещества образуют одну фазу (раствор). При гетерогенном катализе катализатор (обычно твердое вещество) и реагирующие вещества находятся в разных фазах.

В ходе гомогенного катализа катализатор образует с реагентом промежуточное соединение, с большой скоростью реагирующее со вторым реагентом или быстро разлагающееся с выделением продукта реакции.

Пример гомогенного катализа: окисление оксида серы(IV) до оксида серы(VI) кислородом при нитрозном способе получения серной кислоты (здесь катализатором является оксид азота(II), легко реагирующий с кислородом).

При гетерогенном катализе реакция протекает на поверхности катализатора. Начальными стадиями являются диффузия частиц реагентов к катализатору и их адсорбция (т. е. поглощение) поверхностью катализатора. Молекулы реагента взаимодействуют с атомами или группами атомов, находящимися на поверхностим катализатора, образуя промежуточные поверхностные соединения. Перераспределение электронной плотности, происходящее в таких промежуточных соединениях, приводит к образованию новых веществ, которые десорбируются, т. е. удаляются с поверхности.

Процесс образования промежуточных поверхностных соединений происходит на активных центрах катализатора.

Пример гетерогенного катализа - увеличение скорости окисления оксида серы(IV) до оксида серы(VI) кислородом в присутствии оксида ванадия(V).

Примеры каталитических процессов в промышленности и технике: синтез аммиака, синтез азотной и серной кислот, крекинг и риформинг нефти, дожиг продуктов неполного сгорания бензина в автомобилях и т. д.

Примеры каталитических процессов в природе многочисленны, поскольку большинство биохимических реакций, протекающих в живых организмах, относятся к числу каталитических реакций. Катализаторами таких реакций являются белковые вещества, называемые ферментами. В организме человека находится около 30 000 ферментов, каждый из которых катализирует процессы только одного типа (например, птиалин слюны катализирует только превращение крахмала в глюкозу).

4. Химическое равновесие. Обратимые и необратимые химические реакции. Состояние химического равновесия. Константа химического равновесия. Факторы, определяющие величину константы равновесия: природа реагирующих веществ и температура. Сдвиг химического равновесия. Влияние изменения концентрации, давления и температуры на положение химического равновесия.

Химические реакции, в результате которых исходные вещества полностью превращаются в продукты реакции, называются необратимыми. Реакции, идущие одновременно в двух противоположных направлениях (прямом и обратном), называются обратимыми.

В обратимых реакциях состояние системы, при котором скорости прямой и обратной реакции равны (), называется состоянием химического равновесия. Химическое равновесие является динамическим, т. е. его установление не означает прекращение реакции. В общем случае для любой обратимой реакции аА + bB - dD + eE, независимо от ее механизма, выполняется соотношение:

При установившемся равновесии произведение концентраций продуктов реакции, отнесенное к произведению концентраций исходных веществ, для данной реакции при данной температуре представляет собой постоянную величину, называемую константой равновесия (К).

Величина константы равновесия зависит от природы реагирующих веществ и температуры, но не зависит от концентраций компонентов равновесной смеси.

Изменение условий (температуры, давления, концентрации), при которых система находится в состоянии химического равновесия (), вызывает нарушение равновесия. В результате неодинакового изменения скоростей прямой и обратной реакций () c течением времени в системе устанавливается новое химическое равновесие (), соответствующее новым условиям. Переход из одного равновесного состояния в другое называется сдвигом, или смещением положения равновесия.

Если при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в правой части уравнения реакции, говорят, что равновесие смещается вправо. Если же при переходе из одного равновесного состояние в другое увеличиваются концентрации веществ, записанных в левой части уравнения реакции, говорят, что равновесие смещается влево.

Направление смещения химического равновесия в результате изменения внешних условий определяется принципом Ле-Шателье: Если на систему, находящуюся в состоянии химического равновесия, оказать внешнее воздействие (изменить температуру, давление или концентрации веществ), то оно будет благоприятствовать протеканию того из двух противоположных процессов, который ослабляет это воздействие.

Согласно принципу Ле-Шателье:

Увеличение концентрации компонента, записанного в левой части уравнения, приводит к смещению равновесия вправо; увеличение концентрации компонента, записанного в правой части уравнения, приводит к смещению равновесия влево;

При увеличении температуры равновесие смещается в сторону протекания эндотермической реакции, а при уменьшении температуры - в сторону протекания экзотермической реакции;

  • - При увеличении давления равновесие смещается в сторону реакции, уменьшающей число молекул газообразных веществ в системе, а при уменьшении давления - в сторону реакции, увеличивающей число молекул газообразных веществ.
  • 5. Фотохимические и цепные реакции. Особенности протекания фотохимических реакций. Фотохимические реакции и живая природа. Неразветвленные и разветвленные химические реакции (на примере реакций образования хлороводорода и воды из простых веществ). Условия зарождения и обрыва цепей.

Фотохимические реакции - это реакции, проходящие под действием света. Фотохимическая реакция протекает, если реагент поглощает кванты излучения, характеризующиеся вполне определенной для данной реакции энергией.

В случае одних фотохимических реакций, поглощая энергию, молекулы реагента переходят в возбужденное состояние, т.е. становятся активными.

В других случаях фотохимическая реакция протекает, если поглощаются кванты настолько большой энергии, что химические связи разрываются и происходит диссоциация молекул на атомы или группы атомов.

Скорость фотохимической реакции тем больше, чем больше интенсивность облучения.

Пример фотохимической реакции в живой природе - фотосинтез, т.е. образование органических веществ клеток благодаря энергии света. У большинства организмов фотосинтез проходит при участии хлорофилла; в случае высших растений фотосинтез суммарно выражается уравнением:

CO 2 + H 2 O органическое вещество + О 2

В основе функционирования процессов зрения тоже лежат фотохимические процессы.

Цепная реакция - реакция, представляющая собой цепь элементарных актов взаимодействия, причем возможность протекания каждого акта взаимодействия зависит от успешности прохождения предыдущего акта.

Стадии цепной реакции - зарождение цепи, развитие цепи и обрыв цепи.

Зарождение цепи происходит, когда за счет внешнего источника энергии (кванта электромагнитного излучения, нагревания, электрического разряда) образуются активные частицы с неспаренными электронами (атомы, свободные радикалы).

В ходе развития цепи радикалы взаимодействуют с исходными молекулами, причем в каждом акте взаимодействия образуются новые радикалы.

Обрыв цепи наступает, если два радикала сталкиваются и передают выделяющуюся при этом энергию третьему телу (молекуле, устойчивой к распаду, или стенке сосуда). Цепь также может оборваться, если образуется малоактивный радикал.

Два типа цепных реакций - неразветвленные и разветвленные.

В неразветвленных реакциях на стадии развития цепи из каждого реагирующего радикала образуется один новый радикал.

В разветвленных реакциях на стадии развития цепи из одного реагирующего радикала образуется 2 или больше новых радикалов.

6. Факторы, определяющие направление протекания химической реакции. Элементы химической термодинамики. Понятия: фаза, система, среда, макро- и микросостояния. Основные термодинамические характеристики. Внутренняя энергия системы и ее изменение в ходе химических превращений. Энтальпия. Соотношение энтальпии и внутренней энергии системы. Стандартная энтальпия вещества. Изменение энтальпии в системах в ходе химических превращений. Тепловой эффект (энтальпия) химической реакции. Экзо- и эндотермические процессы. Термохимия. Закон Гесса. Термохимические расчеты.

Термодинамика изучает закономерности обмена энергией между системой и внешней средой, возможность, направление и пределы самопроизвольного протекания химических процессов.

Термодинамическая система (или просто система) - тело или группа взаимодействующих тел, мысленно выделяемых в пространстве. Остальная часть пространства за пределами системы называется окружающей средой (или просто средой). Система отделена от среды реальной или воображаемой поверхностью.

Гомогенная система состоит из одной фазы, гетерогенная система - из двух или более фаз.

Фаза - это часть системы, однородная во всех ее точках по химическому составу и свойствам и отделенная от других частей системы поверхностью раздела.

Состояние системы характеризуется всей совокупностью ее физических и химических свойств. Макросостояние определяется усредненными параметрами всей совокупности частиц системы, а микросостояние - параметрами каждой отдельной частицы.

Независимые переменные, определяющие макросостояние системы, называются термодинамическими переменными, или параметрами состояния. В качестве параметров состояния обычно выбирают температуру Т, давление р, объем V, химическое количество n, концентрацию с и т. д.

Физическая величина, значение которой зависит только от параметров состояния и не зависит от пути перехода к данному состоянию, называется функцией состояния. Функциями состояния являются, в частности:

U - внутренняя энергия;

Н - энтальпия;

S - энтропия;

G - энергия Гиббса (свободная энергия или изобарно-изотермический потенциал).

Внутренняя энергия системы U - это ее полная энергия, состоящая из кинетической и потенциальной энергии всех частиц системы (молекул, атомов, ядер, электронов) без учета кинетической и потенциальной энергии системы как целого. Поскольку полный учет всех этих составляющих невозможен, то при термодинамическом изучении системы рассматривают изменение ее внутренней энергии при переходе из одного состояния (U 1) в другое (U 2):

U1 U2 U = U2 - U1

Изменение внутренней энергии системы может быть определено экспериментально.

Система может обмениваться энергией (теплотой Q) с окружающей средой и совершать работу А, или, наоборот, над системой может быть совершена работа. Согласно первому закону термодинамики, являющемуся следствием закона сохранения энергии, теплота, полученная системой, может быть использована только на увеличение внутренней энергии системы и на совершение системой работы:

Q = U + A

В дальнейшем будем рассматривать свойства таких систем, на которые не воздействуют никакие иные силы, кроме сил внешнего давления.

Если в системе процесс идет при постоянном объеме (т. е. отсутствует работа против сил внешнего давления), то А = 0. Тогда тепловой эффект процесса, идущего при постоянном объеме, Q v равен изменению внутренней энергии системы:

Большинство химических реакций, с которыми приходится сталкиваться в обыденной жизни, идет при постоянном давлении (изобарные процессы). Если на систему не действуют иные силы, кроме постоянного внешнего давления, то:

A = p(V2 - V1 ) = pV

Поэтому в нашем случае (р = const):

Qp =U + pV

Q р = U2 - U1 + p(V2 - V1 ), откуда

Q p = (U2 + pV2 ) - (U1 + pV1 ).

Функция U + pV называется энтальпией; ее обозначают буквой Н. Энтальпия есть функция состояния и имеет размерность энергии (Дж).

Qp = H2 - H1 = H,

т. е. тепловой эффект реакции при постоянном давлении и температуре Т равен изменению энтальпии системы в ходе реакции. Он зависит от природы реагентов и продуктов, их физического состояния, условий (Т, р) проведения реакции, а также от количества веществ, участвующих в реакции.

Энтальпией реакции называют изменение энтальпии системы, в которой реагенты взаимодействуют в количествах, равных стехиометрическим коэффициентам в уравнении реакции.

Энтальпия реакции называется стандартной, если реагенты и продукты реакции находятся в стандартных состояниях.

Стандартное состояние вещества - агрегатное состояние или кристаллическая форма вещества, в которой оно термодинамически наиболее устойчиво при стандартных условиях (T = 25 o C или 298 К; р = 101,325 кПа).

Стандартным состоянием вещества, существующего при 298 К в твердом виде, считают его чистый кристалл под давлением 101,325 кПа; в жидком виде - чистую жидкость под давлением 101,325 кПа; в газообразном виде - газ с собственным давлением 101,325 кПа.

Для растворенного вещества стандартным считают его состояние в растворе при моляльности 1 моль/кг, причем предполагается, что раствор обладает свойствами бесконечно разбавленного раствора.

Стандартная энтальпия реакции образования 1 моль данного вещества из простых веществ, находящихся в своих стандартных состояниях, называется стандартной энтальпией образования этого вещества.

Пример записи: (CO 2) = - 393,5 кДж/моль.

Стандартная энтальпия образования простого вещества, находящегося в наиболее устойчивом (при данных р и Т) агрегатном состоянии, принимается равной 0. Если элемент образует несколько аллотропных модификаций, то нулевую стандартную энтальпию образования имеет только самая устойчивая (при данных р и Т) модификация.

Обычно термодинамические величины определяют при стандартных условиях:

р = 101,32 кПа и Т = 298 К (25 о С).

Химические уравнения, в которых указаны изменения энтальпии (тепловые эффекты реакций), называются термохимическими уравнениями. В литературе можно встретить две формы записи термохимических уравнений.

Термодинамическая форма записи термохимического уравнения:

С (графит) + О 2 (г) СО 2 (г) ; = - 393,5 кДж.

Термохимическая форма записи термохимического уравнения этого же процесса:

С (графит) + О 2 (г) СО 2 (г) + 393,5 кДж.

В термодинамике тепловые эффекты процессов рассматривают с позиций системы. Поэтому, если система выделяет теплоту, то Q < 0, а энтальпия системы уменьшается (ДH < 0).

В классической термохимии тепловые эффекты рассматриваются с позиций окружающей среды. Поэтому, если система выделяет теплоту, то принимается, что Q > 0.

Экзотермическим называется процесс, протекающий с выделением теплоты (ДH < 0).

Эндотермическим называется процесс, протекающий с поглощением теплоты (ДH > 0).

Основным законом термохимии является закон Гесса: "Тепловой эффект реакции определяется только начальным и конечным состоянием системы и не зависит от пути перехода системы из одного состояния в другое".

Следствие из закона Гесса: Стандартный тепловой эффект реакции равен сумме стандартных теплот образования продуктов реакции за вычетом суммы стандартных теплот образования исходных веществ с учетом стехиометрических коэффициентов:

  • (реакции) = (прод.) -(исх.)
  • 7. Понятие об энтропии. Изменение энтропии в ходе фазовых превращений и химических процессов. Понятие об изобарно-изотермическом потенциале системы (энергии Гиббса, свободной энергии). Соотношение между величиной изменения энергии Гиббса и величинами изменения энтальпии и энтропии реакции (основное термодинамическое соотношение). Термодинамический анализ возможности и условий протекания химических реакций. Особенности протекания химических процессов в живых организмах.

Энтропия S - это величина, пропорциональная логарифму числа равновероятных микросостояний (W), через которые может быть реализовано данное макросостояние:

S = k · ln W

Единица энтропии - Дж/моль?K.

Энтропия является количественной мерой степени неупорядоченности системы.

Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы, в результате которых упорядоченность системы возрастает (конденсация, полимеризация, сжатие, уменьшение числа частиц), сопровождаются уменьшением энтропии.

Существуют методы расчета абсолютного значения энтропии вещества, поэтому в таблицах термодинамических характеристик индивидуальных веществ приведены данные для S 0 , а не для ДS 0 .

Стандартная энтропия простого вещества, в отличие от энтальпии образования простого вещества, не равна нулю.

Для энтропии справедливо утверждение, аналогичное рассмотренному выше для Н: изменение энтропии системы в результате химической реакции (S) равно сумме энтропий продуктов реакции за вычетом суммы энтропий исходных веществ. Как и при вычислении энтальпии, суммирование производят с учетом стехиометрических коэффициентов.

Направление, в котором в изолированной системе самопроизвольно протекает химическая реакция, определяется совместным действием двух факторов: 1) тенденцией к переходу системы в состояние с наименьшей внутренней энергией (в случае изобарных процессов - с наименьшей энтальпией); 2) тенденцией к достижению наиболее вероятного состояния, т. е. состояния, которое может быть реализовано наибольшим числом равновероятных способов (микросостояний), т.е.:

ДH > min, ДS > max.

Функцией состояния, одновременно отражающей влияние обеих упомянутых выше тенденций на направление протекания химических процессов, служит энергия Гиббса (свободная энергия, или изобарно-изотермический потенциал), связанная с энтальпией и энтропией соотношением

где Т - абсолютная температура.

Как видно, энергия Гиббса имеет ту же размерность, что и энтальпия, и поэтому обычно выражается в Дж или кДж.

Для изобарно-изотермических процессов (т. е. процессов, протекающих при постоянных температуре и давлении) изменение энергии Гиббса равно:

G = H - TS

Как и в случае H и S, изменение энергии Гиббса G в результате химической реакции (энергия Гиббса реакции) равно сумме энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ; суммирование производят с учетом числа молей участвующих в реакции веществ.

Энергию Гиббса образования вещества относят к 1 молю этого вещества и обычно выражают в кДж/моль; при этом G 0 образования наиболее устойчивой модификации простого вещества принимают равной нулю.

При постоянстве температуры и давления химические реакции могут самопроизвольно протекать только в таком направлении, при котором энергия Гиббса системы уменьшается (G0). Это есть условие принципиальной возможности осуществления данного процесса.

В приведенной таблице показана возможность и условия протекания реакции при различных сочетаниях знаков Н и S:

По знаку G можно судить о возможности (невозможности) самопроизвольного протекания отдельно взятого процесса. Если на систему оказывать воздействие, то в ней можно осуществить переход от одних веществ к другим, характеризующийся увеличением свободной энергии (G>0). Например, в клетках живых организмов протекают реакции образования сложных органических соединений; движущей силой таких процессов являются солнечное излучение и реакции окисления в клетке.

Любой процесс протекает во времени, следовательно можно говорить о скорости процесса. Это относится и к химическим реакциям. Раздел химии, рассматривающий скорости и механизмы химических процессов, называется химической кинетикой. Скорость химических реакций определяется изменением молярной концентрации одного из реагирующих веществ или продуктов реакции в единицу времени. A B

Факторы, влияющие на скорость реакции 1. Природа реагирующих веществ Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало активны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно. Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно при нагревании. Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает. Закон действующих масс Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. Предположим, имеем реакцию: a. A + b. B =d. D + f. F. Общее уравнение скорости реакции запишется как = k [A]a [B]b Это называется кинетическим уравнением реакции. k - константа скорости реакции. k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. Показатели степеней при концентрациях в кинетическом уравнении называются порядками реакции по данному веществу, а их сумма общим порядком реакции. Порядки реакций устанавливаются экспериментально, а не по стехиометрическим коэффициентам.

Порядок может быть и дробным. Реакции обычно идут по стадиям, поскольку невозможно представить себе одновременное столкновение большого числа молекул. Предположим, что некая реакция A + 2 B = C + D идет в две стадии A + B = AB и AB + B = C + D, тогда, если первая реакция идет медленно, а вторая быстро, то скорость определяется первой стадией (пока она не пройдет, не может идти вторая), т. е. накоплением частиц АВ. Тогда и = k. CACB. Скорость реакции определяется самой медленной стадией. Отсюда различия между порядком реакции и стехиометрическими коэффициентами. Например, реакция разложения перекиси водорода 2 H 2 O 2= H 2 O + O 2 на самом деле реакция первого порядка, т. к. она лимитируется первой стадией H 2 O 2 = H 2 O + O а вторая стадия О + О = О 2 идет очень быстро. Может быть самой медленной не первая, а вторая или другая стадия и тогда мы получаем иногда дробный порядок, выражая концентрации интермедиатов через концентрации начальных веществ.

Определение порядка реакции. Графический метод. Для определения порядка реакции можно прибегнуть к графическому представлению функций, описывающих зависимость концентрации от времени. Если при построении зависимости С от t получается прямая, это означает, что реакция – нулевого порядка. Если линейна зависимость lg C от t, имеет место реакция первого порядка. При условии что начальная концентрация всех реагентов одинакова, реакция имеет второй порядок, если линейным является график зависимости 1/С от t, и третий – в случае линейности зависимости 1/С 2 от t.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2 - 4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле: t 2/ t 1= (t 2 - t 1)/10 (где t 2 и t 1 - скорости реакции при температурах t 2 и t 1 соответственно; - температурный коэффициент данной реакции). Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e–Ea/RT где A - предэкспоненциальный множитель, постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние), С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

Энергия активации обычно составляет 40 - 450 к. Дж/моль и зависит от механизма реакций: а) Простые H 2 +I 2 = 2 HI Еа = 150 - 450 к. Дж/моль б) Реакции ионов с молекулами Еа = 0 - 80 к. Дж/моль. Пример: облучение светом молекулы воды ионизирует ее H 2 O + = H 2 O+ + e-, такой ион уже легко вступает во взаимодействия. в) Радикальные реакции - во взаимодействие вступают радикалы - молекулы с неспаренными электронами. OH, NH 2, CH 3. Еа = 0 – 40 к. Дж/моль.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. Измельчение твердых веществ приводит к увеличению числа активных центров. Активный центр – это участок на поверхности твердого вещества, на котором протекает химическая реакция. Реакция в гомогенной системе протекает за счет диффузии. Диффузия – это самопроизвольный массоперенос, который способствует равномерному распределению вещества по всему объему системы.

Скорость гетерогенных реакций В гетерогенной реакции участвуют несколько фаз, среди которых есть фазы постоянного состава, поэтому концентрация веществ этой фазы считается постоянной: не меняется в процессе реакции и не входит в кинетическое уравнение. Например: Са. О(тв) + СО 2(Г) = Са. СО 3(тв) Скорость реакции зависит только от концентрации СО 2 и кинетическое уравнение имеет вид: u = к * С(СО 2) Взаимодействие протекает на поверхности раздела фаз, и его скорость зависит от степени измельчения Са. О. Реакция складывается из двух стадий: перенос реагентов через поверхность раздела и взаимодействия между реагентами.

5. Присутствие катализатора Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Реакции, протекающие с участием катализаторов, называются катализом. Различают два типа катализа: 1) положительный: скорость реакции возрастает (участвуют катализаторы); 2) отрицательный: скорость реакции уменьшается (участвуют ингибиторы)

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При этом катализатор не оказывает влияние на изменение энтальпии, энтропии и энергии Гиббса при переходе от исходных веществ к конечным. Также катализатор не оказывает влияние на равновесие процесса, он может лишь ускорить момент его наступления. Энергетическая диаграмма реакции: 1 – без катализатора (Еа) 2 – реакция в присутствии катализатора (Еа (кат))

По характеру каталитических процессов катализ делится на гомогенный и гетерогенный. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях).

При гомогенном катализе реакция идет во всем объеме сосуда, что способствует высокой эффективности действия катализатора, но при этом затруднено выделение продуктов из реакционной смеси. Пример: получение серной кислоты камерным способом 2 NO + O 2 = 2 NO 2 SO 2 + NO 2 = SO 3 + NO Процесс окисления диоксида серы до триоксида катализируется оксидом азота (+2). Наиболее распространенными катализаторами жидкофазных реакций являются кислоты и основания, комплексы переходных металлов и ферменты (ферментативный катализ).

Ферментативный катализ Катализаторами в ферментативном катализе являются ферменты. Под действием ферментов протекают все процессы в живых организмах. Характерной особенностью ферментов является их специфичность. Специфичность – это свойство фермента изменять скорость реакций одного типа и не влиять на многие другие реакции, протекающих в клетке.

Гетерогенный катализ Гетерогенные процессы протекают на поверхности раздела фаз. Более изучены процессы, протекающие в газовых фазах с участием твердого катализатора. Гетерогенный катализ на твердой поверхности объясняется на основе представлений теории адсорбции. Адсобция – это накопление молекул на поверхности раздела фаз (не путать с абсорбцией – поглощение молекул другого вещества всем объемом твердого). Различают адсорбцию двух типов: физическую и химическую.

Физическая адсорбция происходит при связывании молекул с активными центрами на поверхности твердого вещества силами Ван-дер-Ваальса (межмолекулярное взаимодействие). Химическая адсорбция (хемосорбция) происходит, если молекулы связываются с активными центрами на поверхности химическими связями (идет химическая реакция).

Механизм гетерогенного катализа Гетерогенный катализ включает как физическую, так и химическую адсорбцию. Такой катализ включает 5 стадий: 1) диффузия: реагирующие молекулы диффундируют к 2) 3) 4) 5) поверхности твердого катализатора; Адсорбция: сначала идет физическая адсорбция, затем хемосорбция; Химическая реакция: реагирующие молекулы, оказавшиеся рядом, вступают в химическую реакцию с образованием продуктов; Десорбция: стадия, обратная адсорбции – высвобождение продуктов реакции с поверхности твердого катализатора; Диффузия: молекулы продуктов диффундируют от поверхности катализатора

Схема каталитического гидрирования этилена тонкоизмельченным никелем Реакцию каталитического гидрирования суммарно можно записать: С 2 Н 4(г) + Н 2(г) → С 2 Н 6(г) Реакция идет при Т = 400 К. Для увеличения эффективности атализаторов к к ним добавляются вещества – промоторы (оксиды калия, алюминия и др.).

Каталитические преобразователи (конверктеры) используются в некоторых системах выброса выхлопных газов для превращения вредных газов в безвредные. Схема типичного каталитического преобразователя

Выхлопные газы, содержащие СО и углеводороды, пропускают через слой шариков, покрытых платиновыми и палладиевыми катализаторами. Преобразователь нагревают и через него прогоняют избыток воздуха. В результате СО и углеводороды превращаются в СО 2 и воду, которые являются безвредными веществами. Бензин, которыми заправляют автомобили не должен содержать примесей свинца, иначе эти примеси отравят катализатор.

Реакции могут идти в двух противоположных направлениях. Такие реакции называются обратимыми. Необратимых реакций не бывает. Просто в определенных условиях некоторые реакции можно довести практически до конца, если удалять из сферы реакции продукты - осадок, газ или малодиссоциирующее вещество и т. д.

Рассмотрим обратимую реакцию A + В ↔ D + С В начальный момент времени, когда концентрации веществ А и В максимальны, скорость прямой реакции тоже максимальна. С течением времени скорость прямой реакции падает пр= kпр *С(A)*С(B) Реакция приводит к образованию D и С, молекулы которых, сталкиваясь могут вновь реагировать, образуя снова A и B. Чем выше концентрация D и С, тем вероятнее обратный процесс, тем выше скорость обратной реакции об= kоб *С(D) С(С)

Изменение скоростей прямой и обратной реакций можно представить графиком: По мере прохождения реакции наступает такой момент, когда скорости прямой и обратной реакций делаются равными, кривые пр и об сливаются в одну прямую линию, параллельную оси времени, т. е. пр = об

Такое состояние системы называется состоянием равновесия. При равновесии концентрации всех участников реакции остаются постоянными и не меняются со временем, хотя одновременно идут и прямая и обратная реакции. Т. е. равновесие является динамическим. При равновесии пр= об или kпр С(А)*С(В) = kоб С(D) *С(С) откуда - константа химического равновесия равна: Кс = кпр/ кобр = [С] * [D] [А] * [В]

Константа равновесия не зависит от механизма протекания реакции (даже при введении в систему катализатора: катализатор может ускорить наступление момента равновесия, но не влияет на значения равновесных концентраций). Константа равновесия зависит от природы реагирующих веществ и температуры. Зависимость константы равновесия от температуры можно выразить соотношением: ∆G 0 = -R ·T · ln. Kc или ∆G 0 = -2, 3·R ·T · lg. Kc

Так как равновесие в системе является динамическим, то его можно смещать (сдвиг равновесия) в сторону прямой или обратной реакции, изменяя условия: концентрацию, температуру или давление. Чтобы определить, в какую сторону оно сместится, можно воспользоваться принципом Ле Шателье: если на систему, находящуюся в равновесии, оказывается воздействие, равновесие смещается в сторону той реакции, которая ослабляет это воздействие.

Увеличение концентрации кислорода или диоксида серы приведет к смещению равновесия вправо 2 SO 2 + O 2 2 SO 3. Повышение температуры смещает равновесие в сторону эндотермической реакции, поскольку при этом поглощается избыточное тепло и температура понижается Ca. CO 3 Ca. O + CO 2 - Q В данной реакции повышение температуры смещает равновесие в сторону разложения карбоната.

При увеличении давления равновесие смещается в сторону уменьшения количества молей газа. 2 SO 2 + O 2 2 SO 3 В этой реакции увеличение давления приведет к сдвигу равновесия вправо, уменьшение давление – влево. В случае одинакового количества молей газа в правой и левой частях уравнения изменение давления не влияет на равновесие. N 2(г) + O 2 (г) = 2 NO(г)

Химическая термодинамика изучает превращения энергии и энергетические эффекты, сопровождающие химические и физические процессы, а также возможность и направление самопроизвольного протекания процесса. Химическая термодинамика является основой современной химии. Химическая реакция - процесс, при котором одни связи заменяются другими, образуются одни соединения, разлагаются другие. Следствие - энергетические эффекты, т. е. изменение внутренней энергии системы.

а) Система - тело или группа тел, находящихся во взаимодействии с окружающей средой и мысленно обособляемых от нее (вода в стакане). Если такая система не обменивается веществом со средой (стакан покрыт крышкой), она называется закрытой. Если же система имеет постоянный объем и рассматривается как лишенная возможности обмена веществом и энергией с окружающей средой (вода в термосе), такая система называется изолированной.

б) Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и. д. , т. е. все виды энергии кроме кинетической и потенциальной энергии системы в целом. Внутреннюю энергию нельзя определить, поскольку у системы нельзя отнять всю энергию. в) Фаза - гомогенная часть гетерогенной системы (вода и лед в стакане) Фазовый переход - превращения фаз (таяние льда, кипение воды)

Энергетические превращения в ходе процесса выражаются в виде теплового эффекта - либо теплота выделяется (экзотермические реакции), либо поглощается (эндотермические реакции). Количество выделенной или поглощенной теплоты Q называется тепловым эффектом реакции. Изучением тепловых эффектов занимается термохимия.

Процессы могут протекать либо при постоянном объеме V=const (изохорные процессы), либо при постоянном давлении p=const (изобарные процессы). Поэтому и тепловые эффекты будут различаться Qv и Qp. Система в ходе реакции переходит из начального состояния 1 в конечное состояние 2, каждому из которых соответствует своя внутренняя энергия U 1 и U 2. Таким образом, изменение внутренней энергии системы составляет ∆ U= U 2 - U 1

Cистема, изменяясь, всегда совершает работу А (чаще работу расширения). Следовательно, тепловой эффект реакции равен в соответствии с законом сохранения и превращения энергии (1 закон термодинамики): Q = U + A где А - работа, производимая системой Так как А – это работа расширения, то A = р(V 2 – V 1) = p V Для изохорного процесса (V=const): V = 0, следовательно, U = Qv При р = const (изобарный процесс): Qp = ∆U +A = (U 2 – U 1) + p(V 2 – V 1) = (U 2 + p. V 2) – (U 1 + p. V 1) = H 2 – H 1 обозначим U + p. V = H

H - энтальпия или теплосодержание расширенной системы. Тогда H = Н 2 – Н 1 H - изменение энтальпии системы. Энтальпия - характеристика (функция) состояния системы, отражает энергетическое состояние системы и учитывает работу расширения (для газов). Энтальпия сама по себе как и U не может быть определена. Можно определить только ее изменение в ходе химической реакции.

Раздел химии, изучающий тепловые эффекты, называется термохимией. Химические уравнения, в которых указан тепловой эффект называются термохимическими уравнениями. 1/2 H 2(г) + 1/2 Cl 2(г) = HCl(г); H = - 92 к. Дж Zn(к) + H 2 SO 4(р) = Zn. SO 4(р) + Н 2(г); Н = -163. 2 к. Дж

1) Знак теплового эффекта - если тепло выделяется, внутренняя энергия системы уменьшается (-), для эндотермических процессов (+). 2) При написании термохимических уравнений необходимо указывать агрегатное состояние вещества, поскольку переход из одного агрегатного состояния в другое также сопровождается тепловым эффектом. 3) H зависит от количества вещества, поэтому важно уравнивать реакции, при этом коэффициенты могут быть дробными. Уравнение (1) можно записать и так H 2 + Cl 2 = 2 HCl, но тогда H/ = 2 H. 4) Н зависит от условий - от температуры и давления. Поэтому обычно приводятся стандартные значения Нo Cтандартные условия: p = 1 атм (101 к. Па), температура 25 о. С (298 К) - отличие от нормальных условий.

Законы термохимии 1. Закон Лавуазье-Лапласа: Тепловой эффект обратной реакции равен тепловому эффекту прямой, но с обратным знаком. H = - Qp 2. Закон Гесса: Тепловой эффект реакции зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути процесса. Следствия из закона Гесса 1) Тепловой эффект кругового процесса равен нулю. Круговой процесс - система, выйдя из начального состояния, в него же и возвращается. H 1 + H 2 - H 3 = 0

2) Тепловой эффект реакции равен сумме стандартных энтальпий образования продуктов реакции за вычетом суммы стандартных образования начальных (исходных) веществ с учетом их стехиометрических коэффициентов. Н 0 = Нf 0 (прод)- Нf 0 (исх) Нf 0 – стандартная энтальпия образования 1 моль вещества из простых веществ, к. Дж/моль (значения определяются по справочнику). 3) Тепловой эффект реакции равен сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания конечных продуктов. Нсг 0 = Нсг 0 (прод) - Нсг 0 (исх)

Поскольку H определить нельзя, а можно только определить ее изменение H, т е. нет точки отсчета, договорились, считать за таковую состояние простых веществ, т. е. считать равными нулю стандартную энтальпию образования простых веществ: Нf 0 (прост. в-ва) = 0 Простое вещество – это форма существования химического элемента в том агрегатном состоянии и в той аллотропной модификации, которая наиболее устойчива при стандартных условиях.

Например, кислород – газ, простое вещество O 2, но не жидкость и не O 3. Углерод - простое вещество графит (для перехода в алмаз H>0) Значения Hfo могут быть и отрицательными [ Ho(HCl)=-92. 3 к. Дж/моль], и положительными [ Ho(NO) = +90. 2 к. Дж/моль]. Чем отрицательнее значения стандартных энтальпий образования, тем устойчивее вещества.

На основании второго следствия из закона Гесса можно рассчитать H 0 реакции, зная теплоты образования участвующих веществ. Ca. O(к) + Si. O 2(к) = Ca. Si. O 3(к) Н 0 = Нf 0 (прод)- Нf 0 (исх) Ho = Hfo(Ca. Si. O 3) - Hfo(Ca. O) - Hfo(Si. O 2) Ho = (- 1635) – (- 635. 5) – (- 859. 4) = = - 139. 1 к. Дж/моль Таким образом, на основании следствия из закона Гесса существует возможность расчета тепловых эффектов реакций и определения стандартных энтальпий образования веществ.

По знаку теплового эффекта можно определить возможность протекания химического процесса при стандартных условиях: если ∆Н 0 0 (эндореакция) – процесс самопроизвольно не протекает Тепловые эффекты измеряются экспериментально при помощи калориметра. Выделяющееся или поглощающееся тепло измеряется по изменению температуры теплоносителя (воды), в которую помещен сосуд с реагирующими веществами. Реакция проводится в замкнутом объеме.

Энтропия Основной вопрос когда рассматриваются проблемы термодинамики - принципиальная возможность самопроизвольного протекания процесса, его направление. XIX век. Бертло и Томсен сформулировали следующий принцип: любой химический процесс должен сопровождаться выделением тепла. Аналогия с механикой - тело на наклонной плоскости катится вниз (уменьшение энергии). Кроме того, большинство энтальпий образования, известных в то время были отрицательными. Однако вскоре обнаружились исключения: теплоты образования оксидов азота положительны, самопроизвольно идут многие эндотермические реакции, например растворение солей (нитрат натрия). Следовательно, критерия, предложенного Бертло и Томсеном, не достаточно.

Таким образом, по изменению энергии системы или энтальпии судить о самопроизвольности процесса нельзя. Чтобы предсказать, возможно ли самопроизвольное протекание реакции необходимо ввести еще одну термодинамическую функцию – энтропию. Возьмем два сосуда с разными газами и откроем кран, соединяющий их. Газы смешаются. Никаких изменений внутренней энергии не происходит, однако процесс смешения газов идет самопроизвольно, в то время как их разделение потребует затраты работы. Что изменилось? Изменился порядок.

Вывод: Самопроизвольный процесс, проходящий без изменения энтальпии, совершается в направлении, при котором беспорядок в системе возрастает. Поскольку смешение газов более вероятно, чем их раздельное существование в одном сосуде, можно сказать, что движущей силой смешения газов является тенденция перейти в более вероятное состояние.

Энтропия - это мера беспорядка, хаотичности или неупорядоченности в системе. Определенная трудность при определении энтропии: энергетические запасы смешивающихся газов складываются, а вероятности состояния перемножаются (H=H 1+H 2; но W=W 1 W 2), в то же время, для определения направления процесса нужно суммировать две движущие силы. Химия имеет дело с очень большим числом частиц и поэтому число микросостояний тоже очень большое, т. к. частицы в системе постоянно находятся в движении, а не закреплены на определенном месте.

Поэтому, вероятность состояния системы можно представить в виде функции, которая вела бы себя как энергия. Тогда придумали использовать логарифм вероятности, а для придания ему размерности, сопоставимой с энергией, домножили на R и назвали энтропией S: S = Rln. W Энтропия это логарифмическое выражение вероятности существования системы. Энтропия измеряется в тех же единицах, что и универсальная газовая постоянная R - Дж/К моль. 2 закон термодинамики: реакция осуществляется самопроизвольно только в направлении, при котором энтропия системы возрастает.

Как можно себе представить вероятность состояния? Пусть мы снимаем газ на кинопленку. При рассмотрении каждого кадра в отдельно получается разное расположение молекул при одинаковых условиях (P и T) в каждый момент времени, т. е. множество микросостояний, которые нельзя наложить друг на друга так, чтобы они совпали. Таким образом, энтропия пропорциональна числу микросостояний, которыми можно обеспечить данное макросостояние. Макросостояние определяется температурой и давлением, а микросостояния числом степеней свободы. Одноатомный газ – имеет три степени свободы частиц (движение в трехмерном пространстве); в двухатомных добавляются вращательные степени свободы и колебания атомов; в трехатомных - количество вращательных и колебательных степеней свободы растет. Вывод. Чем сложнее молекула газа, тем больше ее энтропия.

Изменение энтропии Говоря об энтальпии можно оперировать только H, поскольку отсутствует точка отсчета. С энтропией дело обстоит иначе. При абсолютном нуле температур любое вещество должно представлять собой идеальный кристалл - полностью заморожено всякое движение. Следовательно, вероятность такого состояния равна 1, а энтропия равна нулю. 3 закон термодинамики: Энтропия идеального кристалла при 0 К равна 0.

При Т=0 энтропия равна 0. При повышении Т начинаются колебания атомов и S растет до Тпл. Далее следует фазовый переход и скачок энтропии Sпл. С повышением Т энтропия плавно и незначительно растет до Тисп, где снова наблюдается резкий скачок Sисп и опять плавное увеличение. Очевидно, что энтропия жидкости существенно превышает энтропию твердого тела, а энтропия газа - энтропию жидкости. Sгаз>>Sж>>Sтв

Для энтропии справедлив закон Гесса - изменение энтропии, как и изменение энтальпии, не зависит от пути процесса, а зависит только от начального и конечного состояний S = Sf 0 (прод) - Sf 0 (исх) Sf 0 – абсолютная энтропия вещества, Дж/моль*К Знак изменения энтропии указывает направление процесса: если S > 0 процесс протекает самопроизвольно если S

Направление химического процесса Самопроизвольное протекание химического процесса определяется двумя функциями - изменением энтальпии Н, которое отражает взаимодействие атомов, образование химических связей, т. е. определенное упорядочение системы и изменением энтропии S, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если S=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, т. е. уменьшение энтальпии или Н 0.

Для того, чтобы можно было количественно сопоставить эти два критерия, нужно, чтобы они выражались в одинаковых единицах. (Н - к. Дж, S - Дж/K). Так как энтропия напрямую зависит от температуры, то Т S - энтропийный фактор процесса, Н - энтальпийный. В состоянии равновесия оба эти фактора должны равны Н = Т S Это уравнение универсально, оно относится и к равновесию жидкость-пар и к другим фазовым превращениям, а также к химическим реакциям. Благодаря этому равенству можно рассчитать изменение энтропии в равновесном процессе, т. к. при равновесии Н/T = S.

Движущая сила химического процесса определяется двумя функциями состояния системы: стремление к упорядочению (Н) и стремление к беспорядку (TS). Функция, которая учитывает это называется энергией Гиббса G. При Р = const и Т = const энергию Гиббса G находят по выражению: G = Н – ТS или ∆G = ∆Н – Т∆S Это соотношение называется уравнением Гиббса Величина G называется изобарноизотермическим потенциалом или энергией Гиббса, которая зависит от природы вещества, его количества и от температуры.

Энергия Гиббса является функцией состояния, поэтому ее изменение можно также определить по второму следствию из закона Гесса: ∆G 0 = Gf 0 (прод) - Gf 0 (исх) ∆Gf 0 – стандартная свободная энергия образования 1 моль вещества из входящих в него элементов в их стандартных состояниях, к. Дж/моль (определяется по справочнику). ∆Gf 0(прост. в-ва) = 0 По знаку ∆G 0 можно определить направление процесса: если ∆G 0 0, то процесс самопроизвольно не идет

Чем меньше ∆G, тем сильнее стремление к протеканию данного процесса и тем дальше от состояния равновесия, при котором ∆G = 0 и ∆Н = Т · ∆S. Из соотношения ∆G = ∆Н – Т·∆S видно, что самопроизвольно могут протекать и процессы, для которых ∆Н > О (эндотермические). Это возможно, когда ∆S > О, но |T∆S| > |∆H|, и тогда ∆G O.

Пример 1: Вычислить теплоту образования аммиака, исходя из реакции: 2 NH 3(г)+3/2 O 2(г)→N 2(г) + 3 H 2 O(ж), ∆H 0 = -766 к. Дж Теплота образования воды (ж) равна – 286, 2 к. Дж/моль Решение: ∆Н 0 данной химической реакции составит: Н 0 х. р. = Н 0 прод - Н 0 исх= Н 0(N 2) + 3. Н 0(H 2 O) - 2 Н 0(NH 3)– 3/2 Н 0(O 2) Так как теплоты образования простых веществ в стандартном состоянии равны нулю, следовательно: Н 0(NH 3)=[ Н 0(N 2) + 3. Н 0(H 2 O) - Н 0 х. р. ]/2 Н 0(NH 3)= / 2 = 3. (– 286, 2)–(-766)] / 2 = = -46, 3 к. Дж/моль

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе CH 4(г) + CO 2(г) ↔ 2 СО(г) + 2 H 2(г)? Решение: Находим ∆G 0 процесса из соотношения: ∆G 0298 = G 0298 прод - G 0298 исх ∆G 0298= – [(-50, 79) + (-394, 38)] = +170, 63 к. Дж. То, что ∆G 0298>0, указывает на невозможность самопроизвольного протекания прямой реакции при Т = 298 К и равенстве давлений взятых газов 1, 013· 105 Па (760 мм рт. ст. = 1 атм.). Следовательно, при стандартных условиях будет протекать обратная реакция.

Пример 3. Вычислите ∆Н 0298, ∆S 0298, ∆G 0298 реакции, протекающей по уравнению: Fe 2 O 3(т) + 3 С(графит) = 2 Fe(т) + 3 СО(г) Определить температуру, при которой начнется реакция (температуру равновесия). Возможна ли реакция восстановления Fe 2 O 3 углеродом при температурах 500 и 1000 К? Решение: ∆Н 0 и ∆S 0 находим из соотношений: Н 0 = Нf 0 прод- Нf 0 исх и S 0 = Sf 0 прод- Sf 0 исх ∆Н 0298=(3·(-110, 52) + 2· 0) – (- 822, 10 + 3· 0)= - 331, 56 + 822, 10=+490, 54 к. Дж; ∆S 0298=(2· 27, 2 + 3· 197, 91) – (89, 96 + 3· 5, 69) = 541, 1 Дж/К

Находим температуру равновесия. Так как состояние системы в момент равновесия характеризуется ∆G 0 = 0, то ∆Н 0 = Т·∆S 0, следовательно: Тр = ∆Н 0 /∆S 0 Тр = 490, 54*1000/541, 1 = 906, 6 к Энергию Гиббса при температурах 500 К и 1000 К находим по уравнению Гиббса: ∆G 0 =∆Н 0 -Т·∆S 0 ∆G 500 = 490, 54 – 500· 541, 1/1000=+219, 99 к. Дж; ∆G 1000 = 490, 54 – 1000· 541, 1/1000 = - 50, 56 к. Дж. Так как ∆G 500> 0, а ∆G 1000

Пример 4. Реакция горения этана выражается термохимическим уравнением: C 2 H 6(г) + 3½O 2 = 2 CO 2(г) + 3 H 2 O(ж); ∆H 0= -1559, 87 к. Дж. Вычислите теплоту образования этана, если известны теплоты образования CO 2(г) и H 2 O(ж) (справочные данные). Решение Необходимо вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид 2 С(графит)+3 H 2(г)=C 2 H 6(г); ∆H=? Исходя из следующих данных: а)C 2 H 6(г)+3½O 2(г)=2 CO 2(г)+3 H 2 O(ж); ∆H= -1559, 87 к. Дж. б)С(графит)+O 2(г)=CO 2(г); ∆H = -393, 51 к. Дж. в) H 2(г) + ½O 2 = H 2 O(ж); ∆H = -285, 84 к. Дж. На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) – на 3 , а затем сумму этих уравнений вычесть из уравнения (а):

C 2 H 6 + 3½O 2 – 2 С – 2 O 2 – 3 H 2 – 3/2 O 2 = 2 CO 2 + 3 H 2 O – 2 CO 2 – 3 H 2 O ∆H = -1559, 87 – 2 · (-393, 51) – 3 · (-285, 84); ∆H = -1559, 87 + 787, 02 + 857, 52; C 2 H 6=2 С+3 H 2; ∆H = +84, 67 к. Дж. Так как теплота образования равна теплоте разложения с обратным знаком, то ∆H 0298(C 2 H 6)= -84, 67 к. Дж. К тому же результату придем, если для решения задачи применить вывод из закона Гесса: ∆H =2∆H 0298(C 2 H 6) + 3∆H 0298(C 2 H 6) –∆H 0298(C 2 H 6)– 3½∆H 0298(O 2). Учитывая, что стандартные теплоты образования простых веществ условно приняты равными нулю, ∆H 0298(C 2 H 6) = 2∆H 0298(СО 2) + 3∆H 0298(Н 2 О) – ∆H ∆H 0298(C 2 H 6) = 2 · (-393, 51) + 3 · (-285, 84) + 1559, 87; ∆H 0298(C 2 H 6) = -84, 67 к. Дж.

Вещество при изменении давления и температуры может переходить из одного агрегатного состояния в другое. Эти переходы, совершающиеся при постоянной температуре, называются фазовыми переходами первого рода. Количество теплоты, которое вещество получает из окружающей среды либо отдает окружающей среде при фазовом переходе, есть скрытая теплота фазового перехода Qфп.

Если рассматривается гетерогенная система, в которой нет химических взаимодействий, а возможны лишь фазовые переходы, то при постоянстве температуры и давления в системе существует т. е. фазовое равновесие. Фазовое равновесие характеризуется некоторым числом фаз, компонентов и числом степеней свободы системы.

Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне её. Число независимых компонентов системы равно разности числа компонентов числа возможных химических реакций между ними. Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

Число степеней свободы гетерогенной термодинамической системы в состоянии фазового равновесия, определяется правилом фаз Гиббса: Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие. Для системы, на которую из внешних факторов влияют только температура и давление, можно записать: С = К – Ф + 2

Системы классифицируют по числу компонентов (одно-, двухкомпонентные и т. д.), по числу фаз (одно-, двухфазные и т. д.) и числу степеней свободы (инвариантные, моно-, дивариантные и т. д.). Для систем с фазовыми переходами обычно рассматривают графическую зависимость состояния системы от внешних условий – т. е. диаграммы состояния.

Анализ диаграмм состояния позволяет определить число фаз в системе, границы их существования, характер взаимодействия компонентов. В основе анализа диаграмм состояния лежат два принципа: принцип непрерывности и принцип соответствия.

Принцип непрерывности: при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы.

Принцип соответствия: на диаграмме состояния системы каждой фазе соответствует часть плоскости – поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

Рассмотрим и проанализируем диаграмму состояния воды. Вода – единственное присутствующее в системе вещество, число независимых компонентов К = 1. Диаграмма состояния воды В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА – зависимость давления насыщенного пара воды от температуры), твердым телом и газом (линия ОВ – зависимость давления насыщенного пара над льдом от температуры), твердым телом и жидкостью (линия ОС – зависимость температуры плавления льда от давления). Три кривые имеют точку пересечения О, называемую тройной точкой воды; тройная точка отвечает равновесию между тремя фазами.

В тройной точке система трехфазна и число степеней свободы равно нулю; три фазы могут находиться в равновесии лишь при строго определенных значениях Т и Р (для воды тройная точка отвечает состоянию с Р = 6. 1 к. Па и Т = 273. 16 К). Внутри каждой из областей диаграммы (АОВ, ВОС, АОС) система однофазна; число степеней свободы системы равно двум (система дивариантна), т. е. можно одновременно изменять и температуру, и давление, не вызывая изменения числа фаз в системе: С = 1 – 1 + 2 = 2 Диаграмма состояния воды На каждой из линий число фаз в системе равно двум и, согласно правилу фаз, система моновариантна, т. е. для каждого значения температуры имеется только одно значение давления, при котором система двухфазна: С = 1 – 2 + 2 = 1

Страница 1

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ И ХИМИЧЕСКОЙ КИНЕТИКИ


Параметр

Обозначение, единица

Смысловое значение

Внутренняя энергия

U, кДж/моль

Полная энергия системы, равная сумме кинетической, потенциальной и других видов энергии всех частиц этой системы. Это функция состояния, приращение которой равно теплоте, полученной системой в изохорном процессе.

Работа

А, кДж/моль

Энергетическая мера направленных форм движения частиц в процессе взаимодействия системы с окружающей средой.

Теплота

Q, кДж/моль

Энергетическая мера хаотических форм движения частиц в процессе взаимодействия системы с окружающей средой.

Первый закон термодинамики

Q=∆U+A

Теплота, подведенная к закрытой системе, расходуется на увеличение внутренней энергии системы и на совершение системой работы против внешних сил окружающей среды.

Энтропия

S, Дж.(моль∙К)

∆S=Q/T, ∆S° р - ции =∑v 1 S°(прод.р-ции)-∑v 1 (исх.в-в)



Функция состояния, характеризующая меру неупорядоченности системы, т.е. неоднородности расположения и движения её частиц, приращение которой равно теплоте, подведенной к системе в обратимом изотермическом процессе, деленной на абсолютную температуру, при которой осуществляется процесс.

Энтальпия

H, кДж/моль
∆H=∆U+p∆V

Функция состояния, характеризующая энергетическое состояние системы в изобарных условиях.

Энтальпия реакции

∆H р-ции, кДж/моль

Количество теплоты, которое выделяется или поглощается при проведении химических реакций в изобарных условиях.

Стандартное состояние

-

Наиболее устойчивая форма при заданной температуре (обычно 298 К) и давлении 1атм.

Стандартные условия

с.у.

Давление: 101 325 Па=1атм=760 мм рт.ст.

Температура: 25⁰С≈298К. n(X)=1 моль.



Стандартная энтальпия образования простых веществ



При с.у. принимается равной нулю для простых веществ в их наиболее термодинамически устойчивом агрегатном и аллотропном состояниях.

Стандартная энтальпия образования сложных веществ

∆H° обр298 (вещество, агрегатное состояние), кДж/моль

Энтальпия реакции образования 1 моль этого вещества из простых веществ в с.у.

Стандартная энтальпия сгорания

∆H° сгор (X), кДж/моль

Энтальпия сгорания (окисления) 1 моль вещества до высших оксидов в среде кислорода при с.у.

Энтальпия растворения

∆H° р-ции,кДж/моль

Где - теплоемкость раствора



Тепловой эффект растворения твердого вещества в изобарных условиях.

Энергия Гиббса

G, кДж/моль
∆G°=∆Н-Т∆S, ∆G° р-ции =∑v 1 ∆G° 1 (прод.р-ции)-∑ v 1 ∆G° 1 (исх.в-в)

Свободная энергия, обобщенная термодинамическая функция состояния системы, учитывающая энергетику и неупорядоченность системы в изобарных условиях.

Константа равновесия химической реакции для равновесия

К равн, (моль/л) ∆ v , где ∆v зависит от значений стехиометрических коэффициентов веществ. Для реакции aA+bB=cC+dD

Равна отношению произведения равновесных концентрация продуктов реакции к произведению равновесных концентраций реагентов в степенях, равных стехиометрическим коэффициентам.

Уравнение изотермы Вант-Гоффа

Для обратимой реакции aA+bB=cC+dD

, ∆G° р-ции =-RTlnK равн,


Позволяет рассчитать энергию Гиббса при заданных значениях концентраций реагентов и продуктов реакции.

Закон действующих масс для кинетики

V=kc(A) a c(B) b

Скорость реакции пропорциональна произведению концентраций реагирующих веществ в степенях, которые называются порядками реакции по соответствующим веществам.

Порядок реакции по веществу

n i

Показатель степени, в которой входит концентрация реагента в уравнение для скорости химической реакции. Порядок может быть любой величиной: целой, дробной, положительной, нулем, отрицательной и даже переменной, зависящей от глубины протекания реакции.

Общий порядок реакции

n=n λ +n β +…

Сумма порядков реакции по всем реагентам.

Средняя скорость реакции по веществу


Усредненная скорость по веществу за данный промежуток времени

Истинная скорость реакции


Характеризует скорость реакции в данный момент времени (∆τ→0); v 1 – стехиометрический коэффициент вещества в реакции.

Истинная скорость реакции по веществу


Характеризует скорость по веществу в данный момент времени (∆τ→0).

Константа скорости реакции

k, c -1 – для реакций 1-го порядка; л/(моль∙с) – для реакций 2-го порядка

Индивидуальная характеристика реакции, численно равна скорости реакции при концентрациях реагентов, равных 1 моль/л.

Энергия активации

Е а, кДж/моль

Минимальная избыточная энергия взаимодействующих частиц, достаточная для того, чтобы эти частицы вступили в химическую реакцию.

Период полупревращения

Τ1/2, с, мин, ч, сут

Время, за которое концентрация реагирующего вещества уменьшается вдвое.

Период полураспада

Τ1/2, с, мин, ч, сут

Время, за которое количество радиоактивного уменьшается в 2 раза.

Кинетическое уравнение для реакций 1-горядка (интегральная форма)

c=c 0 е - kt


Уравнение линейно относительно переменных ln с и t; k- константа скорости реакции 1-го порядка; с 0 -концентрация исходного вещества в начальный момент времени; с- текущая концентрация исходного вещества в момент времени t; t – время, прошедшее от начала реакции.

Правило Вант-Гоффа

где - температурный коэффициент скорости реакции;

Транскрипт

1 4. Химический процесс. Почему и как идут химические реакции? Термодинамика и кинетика В первой половине XIX века возникла потребность в совершенствовании тепловых машин, производящих механическую работу за счет химических реакций горения. Такими тепловыми машинами в то время было огнестрельное оружие и паровые двигатели. В результате в середине XIX века было создана термодинамика или механическая теория тепла. Термин thermodynamics «термодинамика» предложил в 1851 г. английский ученый Уильям Томсон (лорд Кельвин с 1892) (). Немецкий исследователь Рудольф Юлиус Эмануэль Клаузиус () называл новую науку Mechanische Warmetheorie «механическая теория тепла». Современное определение: Химическая термодинамика наука о зависимости направления и пределов превращений веществ от условий, в которых эти вещества находятся В отличие от других разделов физической химии (строение вещества и химическая кинетика), химическую термодинамику можно применять, ничего не зная о строении вещества. Такое описание требует значительно меньше исходных данных. Конкретный объект термодинамического исследования называют термодинамической системой или просто системой, выделенной из окружающего мира реально существующими или воображаемыми поверхностями. Системой может быть газ в сосуде, раствор реагентов в колбе, кристалл вещества или даже мысленно выделенная часть этих объектов. По уровням взаимодействия с окружающей средой термодинамические системы принято делить на: открытые обмениваются с окружающей средой веществом и энергией (например, живые объекты); закрытые обмениваются только энергией (например, реакция в закрытой колбе или колбе с обратным холодильником), наиболее частый объект химической термодинамики; изолированные не обмениваются ни веществом, ни энергией и сохраняют постоянный объем (приближение реакция в термостате). Строгое термодинамическое рассмотрение возможно только для изолированных систем, которые не существуют в реальном мире. В то же время термодинамика может достаточно точно описывать закрытые и даже открытые системы. Для того, чтобы систему можно было описать термодинамически, она должна состоять из большого числа частиц, сопоставимого с числом Авогадро и таким образом соответствовать законам статистики. Свойства системы разделяют на экстенсивные (суммирующиеся) например, общий объем, масса, и интенсивные (выравнивающиеся) давление, температура, концентрация и т.п. Наиболее важны для расчетов функции состояния такие термодинамические функции, значения которых зависят только от состояния системы и не зависят от пути перехода между состояниями. Процесс в термодинамике это не развитие события во времени, а последовательность равновесных состояний системы, ведущих от начального набора термодинамических переменных к конечному. Термодинамика позволяет полностью решить поставленную задачу, если исследуемый процесс в целом описывается совокупностью равновесных стадий. 11


2 В термодинамических расчетах используют численные данные (табличные) о термодинамических свойствах веществ. Даже небольшие наборы таких данных позволяют рассчитывать множество различных процессов. Для расчета равновесного состава системы не требуется записывать уравнения возможных химических реакций, достаточно учесть все вещества, которые могут в принципе составлять равновесную смесь. Таким образом, химическая термодинамика не дает чисто расчетного (неэмпирического) ответа на вопрос почему? и тем более как? ; она решает задачи по принципу если..., то.... Для тепловых расчетов наиболее важен первый закон термодинамики одна из форм закона сохранения энергии. Его формулировки: Энергия не создается и не уничтожается. Вечный двигатель (perpetuum mobile) первого рода невозможен. В любой изолированной системе общее количество энергии постоянно. Впервые обнаружил связь между химическими реакциями и механической энергией Ю.Р.Майер (1842) [ 1 ], механический эквивалент теплоты измерил Дж.П.Джоуль (). Для термохимических расчетов закон сохранения энергии используется в формулировке Г.И.Гесса: «Когда образуется какое-либо химическое соединение, то при этом всегда выделяется одно и то же количество тепла независимо от того, происходит ли образование этого соединения непосредственно или же косвенным путем и в несколько приемов». Этот закон «постоянства сумм тепла» Гесс огласил в докладе на конференции Российской Академии наук 27 марта 1840 г. [ 2 ] Современная формулировка: «Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса» Энтальпия В общем случае работа, совершаемая химической реакцией при постоянном давлении, состоит из изменения внутренней энергии и работы расширения образующегося газа: ΔQ p = ΔU + pδv Для большинства химических реакций, проводимых в открытых сосудах, удобно использовать функцию состояния, приращение которой равно теплоте, полученной системой в изобарном (т.е. идущем при постоянном давлении) процессе. Эта функция называется энтальпи я (от греч. энтальпо нагреваю) [ 3 ]: ΔQ p = ΔH = ΔU + pδv Другое определение: разность энтальпий в двух состояниях системы равна тепловому эффекту изобарного процесса. 1. В 1840 г. немецкий врач Юлиус Роберт Майер () работал судовым врачом на рейсе из Европы на Яву. Он обратил внимание, что венозная кровь в тропиках светлее, чем в Германии, и сделал вывод, что в тропиках для поддержания той же температуры тела нужно меньше кислорода. Следовательно, теплота и работа могут взаимно превращаться. В 1842 г. Майер теоретически оценил механический эквивалент теплоты в 365 кгм (соврем. 427 кгм) 2 Трифонов Д.Н. "Характер прямой и благородный" (К 200-летию Германа Ивановича Гесса) 3. Название энтальпия предложил нидерландский физик Гейке Камерлинг-Оннес (). 12


3 Именно энтальпия оказалась удобной для описания работы как паровых машин, так и огнестрельного оружия, поскольку в обоих случаях используется расширение горячих газов или водяного пара. Существуют обширные таблицы, содержащие данные по стандартным энтальпиям образования веществ ΔH o 298. Индексы означают, что для химических соединений приведены энтальпии образования 1 моль их из простых веществ, взятых в наиболее устойчивой модификации при 1 атм (1, Па или 760 мм.рт.ст) и 298,15 К (25 о С). Если речь идет об ионах в растворе, то стандартной является концентрация 1 моль/л. Для самих простых веществ принята энтальпия образования, равная 0 (кроме белого фосфора не самой устойчивой, а самой воспроизводимой формы фосфора). Знак энтальпии определяется с точки зрения самой системы: при выделении теплоты изменение энтальпии отрицательно, при поглощении теплоты изменение энтальпии положительно. Пример термохимического расчета чрезвычайно сложной реакции: Энтальпию образования глюкозы из углекислого газа и воды нельзя определить прямым экспериментом, получить глюкозу из простых веществ невозможно. Но мы можем вычислить энтальпии этих процессов. 6 C + 6 H O 2 = C 6 H 12 O 6 (ΔH х -?) Такая реакция невозможна 6 CO H 2 O = C 6 H 12 O O 2 (ΔH у -?) реакция идет в зеленых листьях, но вместе с другими процессами Найдем ΔH х алгебраическим путем. Пользуясь законом Гесса, достаточно скомбинировать три уравнения сжигания: 1) C + O 2 = CO 2 ΔH 1 = -394 кдж 2) H 2 + 1/2 O 2 = H 2 O (пар) ΔH 2 = -242 кдж 3) C 6 H 12 O O 2 = 6 CO H 2 O ΔH 3 = кдж Складываем уравнения «в столбик», умножая 1-е и 2-е на 6 и «разворачивая» третье, тогда: 1) 6 C + 6 O 2 = 6 CO 2 ΔH 1 = 6(-394) кдж 2) 6 H O 2 = 6 H 2 O (пар) ΔH 2 = 6(-242) кдж 3) 6 CO H 2 O = C 6 H 12 O O 2 ΔH 3 = кдж При расчете энтальпии учитываем, что при «развороте» уравнения 3 она поменяла знак: ΔH х = 6 ΔH ΔH 2 - ΔH 3 = 6(-394) + 6(-242) -(-2816) = кдж/моль Очевидно, что ΔH у соответствует процессу, обратному фотосинтезу, т.е. горению глюкозы. Тогда ΔH у = -ΔH 3 = кдж При решении не использованы никакие данные по строению глюкозы; не рассматривался также механизм ее горения Задача Определите энтальпию получения 1 моль озона О 3 из кислорода, если известно, что при сгорании 1 моль кислорода в избытке водорода выделяется 484 кдж, а при сгорании 1 моль озона в избытке водорода выделяется 870 кдж Второй закон термодинамики. Энтропия Второй закон термодинамики по У.Томсону (1851): в природе невозможен процесс, единственным результатом которого была бы механическая работа, совершенная за счет охлаждения теплового резервуара. 13


4 Формулировка Р.Клаузиуса (1850): теплота сама по себе не может перейти от более холодного тела к более теплому или: невозможно сконструировать машину, которая, действуя посредством кругового процесса, будет только переносить теплоту с более холодного тела на более теплое. Самая ранняя формулировка второго закона термодинамики появилась раньше первого закона, на основании работы, выполненной во Франции С.Карно (1824) и ее математической интерпретации Э.Клапейроном (1834) как КПД идеальной тепловой машины: КПД = (T 1 - T 2)/T 1 Карно и Клапейрон сформулировали закон сохранения теплорода невесомой неуничтожимой жидкости, содержание которой определяет температуру тела. Теория теплорода господствовала в термодинамике до середины XIX века, при этом законы и соотношения, выведенные на основе представлений о теплороде, оказались действительными и в рамках молекулярно-кинетической теории теплоты. Чтобы выяснить причины протекания самопроизвольных процессов, идущих без выделения тепла, возникла необходимость описать теплоту методом обобщенных сил, аналогично любой механической работе (А), через обобщенную силу (F) и обобщенную координату (в данном случае тепловую) [ 4 ]: da = Fdx Для тепловых обратимых процессов получим: dq = TdS Т.е. изначально энтропия S это тепловая координата состояния, которая введена (Рудольф Клаузиус, 1865 г.) для стандартизации математического аппарата термодинамики. Тогда для изолированной системы, где dq = 0, получим: В самопроизвольном процессе ΔS > 0 В равновесном процессе ΔS = 0 В несамопроизвольном процессе ΔS < 0 В общем случае энтропия изолированной системы или увеличивается, или остается постоянной: ΔS 0 Энтропия свойство системы в целом, а не отдельной частицы. В 1872 г. Л.Больцман [ 5 ] предложил статистическую формулировку второго закона термодинамики: изолированная система эволюционирует преимущественно в направлении большей термодинамическоой вероятности. В 1900 г. М.Планк вывел уравнение для статистического расчета энтропии: S = k b lnw W число различных состояний системы, доступное ей при данных условиях, или термодинамическая вероятность макросостояния системы. k b = R/N A = 1, эрг/град постоянная Больцмана 4. Полторак О.М., Термодинамика в физической химии. Учеб. для хим. и хим-технол. спец. вузов, М.: Высш. шк., с., стр Больцман Людвиг (Boltzmann, Ludwig) (), австрийский физик. Установил фундаментальное соотношение между энтропией физической системы и вероятностью ее состояния, доказал статистический характер II начала термодинамики Современный биограф Людвига Больцмана физик Карло Черчиньяни пишет: Только хорошо поняв второе начало термодинамики, можно ответить на вопрос, почему вообще возможна жизнь. В 1906 г. Больцман покончил с собой, поскольку обманулся в любви; он посвятил свою жизнь атомной теории, но любовь его осталась без взаимности, потому что современники не могли понять масштаб его картины мира 14


5 Следует всегда помнить, что второй закон термодинамики не является абсолютным; он теряет смысл для систем, содержащих малое число частиц, и для систем космического масштаба. Второй закон, особенно в статистической формулировке, неприменим к живым объектам, которые представляют собой открытые системы и постоянно уменьшают энтропию, создавая идеально упорядоченные молекулы, например, за счет энергии солнечного света. Для живых систем характерна самоорганизация, которую чилийский нейробиолог Умберто Матурана (Humberto Maturana) назвал в 1970 г. автопоэз (самосозидание). Живые системы не только сами постоянно удаляются от классического термодинамического равновесия, но и делают неравновесной окружающую среду. Еще в 1965 г. американский специалист по химии атмосферы Джеймс Лавлок (Lovelock) предложил в качестве критерия наличия жизни на Марсе оценивать равновесность состава атмосферы. В атмосфере Земли содержатся одновременно кислород (21% по объему), метан (0,00018%), водород (0,00005%), моноксид углерода (0,00001%) это явно неравновесная смесь при температурах С. Земная атмосфера открытая система, в формировании которой постоянно участвуют живые организмы. В атмосфере Марса преобладает углекислый газ (95% - ср. с 0,035% на Земле), кислорода в ней менее 1%, а газы-восстановители (метан) пока не обнаружены. Следовательно, атмосфера Марса практически равновесна все реакции между содержащимися в ней газами уже осуществились. Из этих данных Лавлок заключил, что в настоящее время на Марсе жизни нет Энергия Гиббса Введение энтропии дало возможность установить критерии, позволяющие определить направление и глубину протекания любого химического процесса (для большого числа частиц в равновесии). Макроскопические системы достигают равновесия, когда изменение энергии компенсируется энтропийной составляющей: При постоянном давлении и температуре: ΔH p = TΔS p или Δ(H-TS) ΔG = 0 энергия Гиббса[ 6 ] или свободная энергия Гиббса или изобарно-изотермический потенциал Изменение энергии Гиббса как критерий возможности химической реакции Для данной температуры ΔG = ΔH - TΔS При ΔG < 0 реакция возможна; при ΔG > 0 реакция невозможна; при ΔG = 0 система находится в равновесии. 6 Гиббс (Gibbs) Джозайя Уиллард (), американский физик и математик, один из основоположников химической термодинамики и статистической физики. В Гиббс опубликовал фундаментальный трактат О равновесии гетерогенных веществ (On the Equilibrium of Heterogeneous Substances), ставший основой химической термодинамики. 15


6 Возможность самопроизвольной реакции в изолированной системе определяется сочетанием знаков энергетического (энтальпийного) и энтропийного факторов: Знак ΔH Знак ΔS Возможность самопроизвольной реакции + Нет + Да Зависит от соотношения ΔH и TΔS + + Зависит от соотношения ΔH и TΔS Имеются обширные табличные данные по стандартным значениям ΔG 0 и S 0, позволяющие вычислить ΔG 0 реакции. 5. Химическая кинетика Предсказания химической термодинамики наиболее верны в своей запрещающей части. Если, например, для реакции азота с кислородом энергия Гиббса положительна: N 2 + O 2 = 2 NO ΔG 0 = +176 кдж, то эта реакция не пойдет самопроизвольно, и никакой катализатор ей не поможет. Известный заводской процесс получения NO из воздуха требует огромных затрат энергии и неравновесного проведения процесса (закалка продуктов быстрым охлаждением после пропускания смеси газов через электрическую дугу). С другой стороны, далеко не все реакции, для которых ΔG < 0, спешат осуществиться на практике. Куски каменного угля могут веками лежать на воздухе, хотя для реакции C + O 2 = CO 2 ΔG 0 = -395 кдж Предсказание скорости химической реакции, а также выяснение зависимости этой скорости от условий проведения реакции осуществляет химическая кинетика наука о химическом процессе, его механизме и закономерностях протекания во времени. Скорость химической реакции определяется как изменение концентрации одного из участвующих в реакции веществ (исходное вещество или продукт реакции) в единицу времени. Для реакции в общем виде aa + bb xx + yy скорость описывается кинетическим уравнением: v = -ΔC (A) /Δt = ΔC (X) /Δt = k C m n (A) C (B) k называется константой скорости реакции. Строго говоря, скорость определяется не как конечная разность концентраций, а как их производная v = -dc (A) /dt; степенные показатели m и n обычно не совпадают со стехиометрическими коэффициентами в уравнении реакции. Порядком реакции называется сумма всех показателей степеней m и n. Порядок реакции по реагенту A равен m. Большинство реакций являются многостадийными, даже если они описываются простыми стехиометрическими уравнениями. В этом случае обычно получается сложное кинетическое уравнение реакции. Например, для реакции H 2 + Br 2 = 2 HBr dc (HBr) /dt = kc (H2) C (Br2) 0,5 / (1 + k C (HBr) / C (Br2)) 16


7 Такая сложная зависимость скорости от концентраций говорит о многостадийном механизме реакции. Для данной реакции предложен цепной механизм: Br 2 Br. + Br. зарождение цепи Br. + H 2 HBr + H. продолжение цепи H. + Br 2 HBr + Br. продолжение цепи H. + HBr H 2 + Br. ингибирование Br. + Br. Br 2 обрыв цепи Число молекул реагентов, участвующих в простой одностадийной реакции, состоящей из одного элементарного акта, называется молекулярностью реакции. Мономолекулярная реакция: C 2 H 6 = 2 CH 3. Бимолекулярная реакция: CH 3. + CH 3. = C 2 H 6 Примеры относительно редких тримолекулярных реакций: 2 NO + O 2 = 2 NO 2 2 NO + Cl 2 = 2 NOCl H. + H. + Ar = H 2 + Ar Особенностью реакций 1-го порядка, протекающих по схеме: А продукты является постоянство времени полупревращения t 0,5 времени, в течение которого половина исходного вещества превратится в продукты. Это время обратно пропорционально константе скорости реакции k. t 0,5 = 0,693/k т.е. время полупревращения для реакции первого порядка является константой и характеристикой реакции. В ядерной физике период полураспада радиоактивного изотопа является его важным свойством Зависимость скорости реакций от температуры Большинство практически важных реакций ускоряются при нагревании. Зависимость константы скорости реакции от температуры выражается уравнением Аррениуса[ 7 ] (1889): k = Aexp(-E a /RT) Множитель A связан с частотой столкновений частиц и их ориентацией при столкновениях; E a энергия активации данной химической реакции. Для определения энергии активации данной реакции достаточно измерить ее скорость при двух температурах. Уравнение Аррениуса описывает температурную зависимость не только для простых химических процессов. Психологические исследования людей с разной температурой тела (от 36,4 до 39 о С) показали, что субъективное ощущение времени (скорость отсчета тактов) и 7 Сванте Август Аррениус (Arrhenius) () Шведский физико-химик, создатель теории электролитической диссоциации, академик шведской Королевской Академии наук. На основании представлений об образовании активных частиц в растворах электролитов Аррениус выдвинул общую теорию образования «активных» молекул при химических реакциях. В 1889 г., изучая инверсию тростникового сахара, он показал, что скорость этой реакции определяется столкновением только «активных» молекул. Резкое повышение этой скорости с ростом температуры определяется значительным увеличением при этом количества «активных» молекул в системе. Для вступления в реакцию молекулы должны обладать некоторой добавочной энергией по сравнению со средней энергией всей массы молекул вещества при определенной температуре (эта добавочная энергия будет впоследствии названа энергией активации). Аррениус наметил пути изучения природы и вида температурной зависимости констант скорости реакции. 17


8 скорость забывания случайных последовательностей знаков описываются уравнением Аррениуса с энергией активации 190 кдж/моль [ 8 ]. Положительное значение энергии активации показывает, что на пути от исходных веществ к продуктам имеется энергетический барьер, который не позволяет немедленно осуществляться всем термодинамически возможным реакциям: Рисунок 2. Энергия активации (в какой момент ее сообщают спичке?) 8. Леенсон И.А. Почему и как идут химические реакции. М.: МИРОС, с, с



Химический процесс. Почему и как идут химические реакции? Термодинамика и кинетика Химия для психологов. Лекция 3. В.В.Загорский Применение химических реакций. Тепловые машины Паровоз «Ракета» (1814) Джорджа

Элементы химической термодинамики (1) Первый закон термодинамики Лекция курса «Общая и неорганическая химия» для 11-х классов СУНЦ Джозеф Блэк (1728-1799) Теплота и температура Тепловые машины Паровоз

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Крисюк Борис Эдуардович Основы химической термодинамики. Системой будем называть тело или группу тел, отделенных от окружающей среды реальной или мысленной границей. Система

Тема 1 Основы термодинамики (2 часа) Термодина мика (греч θέρμη «тепло», δύναμις «сила») раздел физики, изучающий соотношения и превращения теплоты и других форм энергии В отдельные дисциплины выделились

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Термодинамика это единственная физическая теория, относительно которой я уверен, что она никогда не будет опровергнута. А.Эйнштейн Термодинамика (ТД) - это наука, изучающая законы

«Основные закономерности протекания химических реакций» Лекция 3 Дисциплина «Химия 1.6» для студентов заочного отделения Лектор: к.т.н., Мачехина Ксения Игоревна * План лекции (I часть) 1. Основные понятия.

Энергетика химических превращений. 1й закон термодинамики Лекция 1 Признаки химической реакции изменение цвета появление запаха изменение вкуса выпадение осадка свечение увеличение объема выделение тепла,

Лекция 11 Основные понятия и принципы химической кинетики 1 План лекции 1. Время в физике, химии и биологии. 2. Предмет химической кинетики. Связь хим. кинетики и хим. термодинамики. 3. Основные понятия

Лекция 4. ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ Самопроизвольные и несамопроизвольные процессы. «Потерянная» работа Первый закон термодинамики позволяет решить многие вопросы химии и химической технологии, связанные

Лекция 2. Второй закон термодинамики. Энтропия, энергии Гиббса и Гельмгольца. Процессы Самопроизвольные 1. Проходят без затраты работы. 2. С их помощью можно получить работу. Несамопроизвольные 1. Проходят

Термодинамические величины. Внутренняя энергия E вещества это полная энергия частиц, составляющих данное вещество. Она слагается из кинетической и потенциальной энергий частиц. Кинетическая энергия это

Термохимия и направленность химических реакций Основы термодинамики химических процессов Термодинамика Объект изучения: Энергетические изменения в физических и химических процессах (системах) Система:

Лекция 3. Закономерности протекания химических процессов Лектор: асс. каф. ОНХ Абрамова Полина Владимировна еmail: [email protected] «Термодинамика подобна старой надоедливой тетке. Она всюду сует свой нос,

Сегодня среда, 9 июля 2014 г. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ Лекция 6 Содержание лекции: *Второе начало термодинамики *Энтропия *Закон возрастания энтропии *Энтропия и вероятность *Философское значение II

Химическая кинетика ЛЕКЦИЯ 6 УСТИНОВА ЭЛЬВИРА МАРАТОВНА План лекции 1. Скорость химической реакции 2. Классификация химических реакций 3. Закон действующих масс 4. Влияние температуры на скорость химической

Education Quality Assurance Centre Институт Группа ФИО MODULE: ФИЗИКА (ТЕРМОДИНАМИКА_МОДУЛЬ 2) Ответ Вопрос Базовый билет Нас 1 2 Броуновское движение это движение 1) молекул жидкости 3) мельчайших частиц

Химическая кинетика. Скорости химических реакций.. Основные положения химической кинетики Скоростью химической реакции называется изменение количества вещества за единицу времени. При условии постоянства

СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ. ХИМИЧЕСКОЕ РАВНОВЕСИЕ Общие представления Формирование понятий о скорости химической реакции и химическом равновесии необходимо для понимания учащимися фундаментальных законов

«Химическая термодинамика» Лекция 4 Дисциплина «Общая неорганическая химия» для студентов очного отделения Лектор: к.т.н., Мачехина Ксения Игоревна * План лекции 1. Основные понятия. 2. Первый закон термодинамики.

Лекция 1 Основы химической термодинамики 1. Основные понятия и определения Химическая термодинамика (ХТД) раздел химии, изучающий: - энергетические эффекты ХР; - возможность и направление протекания ХР;

Тема 2 1. Энергетика химических процессов. 2. Химическая кинетика и равновесие 1. Энергетика химических процессов Энергетика химических процессов рассматривается в разделе химии «Химическая термодинамика».

ХИМИЧЕСКАЯ КИНЕТИКА Основные понятия и определения Химическая кинетика это раздел химии, изучающий скорости и механизмы химических реакций 2 Основные понятия и определения Химические реакции гомогенные

Министерство образования и науки Российской Федерации Государственное образовательное учреждение Высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра

ТЕРМОДИНАМИКА Лекция План лекции:. Основные положения и определения термодинамики (термодинамическая система, термодинамический процесс, параметры состояния) 2. Внутренние параметры состояния (давление,

Лекция 4 Основные положения молекулярнокинетической теории строения вещества. Термодинамические системы. Энтропия. Все вещества состоят из атомов и молекул. Атом наименьшая структурная единица химического

Московский государственный университет им.м.в.ломоносова Химический факультет Успенская И.А. Конспект лекций по физической химии (для студентов биоинженерии и биоинформатики) www.chem.msu.ru/teaching/uspenskaja/

ЗАДАНИЕ Термодинамические потенциалы. Химическое равновесие. Вариант 1 1. Запишите условие химического равновесия для реакции СН (г) + / О (г) = СО (г) + Н О (ж).. Какой знак имеет разность химических

Лекция 3 Основное уравнение молекулярно кинетической теории газов 1. Постоянная Больцмана. 2. Уравнение Клапейрона Менделеева. 3. Универсальная газовая постоянная. 4. Газовые законы. 5. Измерение температуры

12. Химические реакции. Скорость, энергетика и обратимость 12.1. Скорость реакций Количественной характеристикой быстроты течения химической реакции А + B D + E является ее скорость, т. е. скорость взаимодействия

1. ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ 1.1. Превращение вещества. Взаимосвязь термодинамики и кинетики. В связи с химическими и физическими преобразованиями материи возникает два вопроса: 1) Могут ли эти преобразования

Лекция 16 Обратимые и необратимые процессы. Циклы. Понятие энтропии. Закон возрастания энтропии. Второе начало термодинамики. Третье начало термодинамики. Равновесным называется состояние, при котором

Энергия Гиббса: открытие, значение, методы измерения Васьков Е.А. КубГТУ Краснодар, Россия Gibbs energy: the opening, the importance of measuring methods Vaskov EA KubGTU Krasnodar, Russia Свободная энергия

Лекция 3 Кинетика химических реакций Цель занятия: изучить кинетику разложения пероксида водорода; определить константу скорости при различных температурах; найти энергию активации реакции. Значимость

ТЕПЛОФИЗИКА План лекции: 1. Термодинамика (основные положения и определения) 2. Внутренние параметры состояния (давление, температура, плотность). Уравнение состояния идеального газа 4. Понятие о термодинамическом

Контрольная работа 1 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА 1. Химическая термодинамика как наука. Первый закон термодинамики, его формулировка и математическое выражение. 2. Что называется термодинамической системой?

Лекция 3. Химическое равновесие. Понятие о кинетике химических реакций. Равновесное состояние это такое состояние системы, при котором: а) еѐ интенсивные параметры не изменяются во времени (p, T, C); б)

Семинары по общей химии Л.С.Гузей Учебное пособие по общей химии для студентов геологического факультета МГУ 01г. Тема Стехиометрия. Определения и утверждения Выберите правильные (ое) определения (ие)

ХИМИЧЕСКАЯ КИНЕТИКА Химическая кинетика изучает скорости протекания химических процессов, их зависимость от различных факторов: концентрации реагирующих веществ, температуры, давления, присутствия катализаторов.

Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет УПИ Кафедра физики ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ТЕМА: ТЕРМОДИНАМИКА ИДЕАЛЬНОГО ГАЗА МЕТОДИЧЕСКИЕ

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции:. Константа равновесия химической реакции. Тепловой закон Нернста Лекция 6. КОНСТАНТА РАВНОВЕСИЯ ХИМИЧЕСКОЙ РЕАКЦИИ Рассмотрим случай гомогенной химической реакции,

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции:. Введение. Основные положения термодинамики (термодинамическая система, термодинамический процесс). Параметры состояния (давление, температура, плотность) 4. Уравнение

Лекция 4 Почему и как идут химические реакции 1 План лекции 1. Классификация химических реакций. 2. Стехиометрическое описание химической реакции. 3. Энергетическая кривая элементарной химической реакции.

Химия 1.2 Лекция 5. Химическое равновесие. Химическая кинетика. Лектор: асс. каф. ОХХТ к.х.н. Абрамова Полина Владимировна еmail: [email protected] «Химия может открыть определенную последовательность даже

Биологический факультет (Специальность биофизика) Факультет биоинженерии и биоинформатики 2006/2007 Общая и неорганическая химия ЛЕКЦИИ Лекция 3. Элементы химической термодинамики и химической кинетики

Лекция 2. ОСНОВЫ ТЕРМОДИНАМИКИ Основные понятия Термодинамика является феноменологической теорией макроскопических систем, поэтому вcе её основные понятия берутся непосредственно из эксперимента. Термодинамическая

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА План лекции: 1. Техническая термодинамика (основные положения и определения) 2. Внутренние параметры состояния (давление, температура, плотность). Понятие о термодинамическом

3.. Работа и количество тепла. 3... Работа внешних сил и работа тела. Запишем работу da, совершаемую внешней силой -F x (минус означает, что внешняя сила направлена против внутренних сил давления газа)

1 МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Основные положения и определения Два подхода к изучению вещества Вещество состоит из огромного числа микрочастиц - атомов и молекул Такие системы называют макросистемами

Экз. билета 1 1. Ковалентная связь. Правило октета. Структуры Льюиса. 2. Давление пара над идеальным раствором. Закон Рауля. Предельно разбавленные растворы. Закон Генри. 3. Гетерогенный катализ: основные

Общие закономерности химических процессов ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ Основные понятия и определения Химическая термодинамика это раздел химии, изучающий взаимные превращения различных форм энергии при

Лекция 1 Основной закон химической кинетики. Е. стр.7-22. Р. стр. 9-19, 23-26, 44-48. Э.-К. стр. 48-57, 70-73 Химическая реакция и химическое равновесие с точки зрения термодинамики. Скоростью химической

ХИМИЯ Лекция 03 Как и почему происходят химические реакции. Термохимия Е.А. Ананьева, к.х.н., доцент, кафедра «Общая Химия» НИЯУ МИФИ Почему идут химические реакции Предсказание возможности осуществления

План лекции: ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Лекция 2. Уравнение состояния идеального газа 2. Уравнение состояния реальных газов и жидкостей 3. Газовые смеси. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА Как известно,

Лекция 2 Равновесное состояние химических систем 2.1 Основные теоретические положения Различают обратимые и необратимые физические процессы и химические реакции. Для обратимых процессов существует состояние

Лекция 6-7 Основы химической термодинамики Основные понятия и определения Химическая термодинамика - это наука, изучающая превращения различных форм энергии при химических реакциях и устанавливающая законы

Химическая термодинамика Пример 1. Известны тепловые эффекты следующих реакций (1) и () при 7 К и постоянном давлении 11, кпа. Рассчитать при тех же условиях тепловой эффект реакции (). (1) C O CO, ()

Вариант 1. 1. Можно ли использовать статистические методы при изучении поведения микроскопических тел? Почему? 2. Может ли единичная молекула находиться в состоянии термодинамического равновесия? 3. Если

Лабораторная работа. Определение константы скорости инверсии сахарозы. Химическая кинетика изучает скорости протекания химических процессов, их зависимость от различных факторов: концентрации реагирующих

Лекция 9 ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ. НЕРАВЕНСТВО КЛАУЗИУСА Термины и понятия Вечный двигатель Возрастание Второго рода Направление процесса Необратимый процесс Необратимый цикл Неравенство Клаузиуса Обратимый

Хими ческая реаќция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). Лекция 10 Существует большое количество

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Крисюк Борис Эдуардович Химическая кинетика. Формальная кинетика. Для реакции A + B C ее скорость v есть: v = - d[a]/dt = - d[b]/dt = d[c]/dt В общем случае для реакции aa

ХИМИЧЕСКАЯ КИНЕТИКА Химическая кинетика изучает скорость и механизм химических реакций. Все реакции по механизму протекания можно разделить на простые (элементарные), протекающие в одну стадию, и сложные,

Лекция 11 Кинетическая теория идеальных газов. Давление и температура. Опытные законы идеального газа. Молекулярно - кинетическая теория раздел физики, изучающий свойства вещества на основе представлений

Л15 Закон сохранения энергии в открытых системах замкнутая система внутренняя энергия U энтропия S(U) k lnw (U) температура ds 1 du Из-за отсутствия контактов с внешней средой внутренняя энергия в этом