История серы химия. Чистая желтая сера




Сера представляет собой вещество, которое находится в таблице в 16 группе, под третьим периодом и имеет атомный номер – 16. Она может встретиться как в самородном, также и в связанном виде. Обозначается сера литерой S. Известна формула серы – (Ne)3s 2 3p 4 . Сера как элемент входит в состав многих белков.

Если говорить о строении атома элемента серы , то на внешней его орбите есть электроны, валентное число которых достигает шести.

Это объясняет свойство элемента быть максимально шестивалентным в большинстве объединений. В структуре природного химического элемента есть четыре изотопа, и это – 32S, 33S, 34S и 36S. Говоря о внешней электронной оболочке, атом имеет схему 3s2 3р4. Радиус атома – 0,104 нанометра.

Свойства серы в первую очередь делятся на физического типа. К нему относится то, что элемент имеет твердый кристаллический состав. Два аллотропических видоизменения – основное состояние, в котором устойчив этот элемент серы.

Первое видоизменение ромбическое, имеющее лимонно-желтую окраску. Его устойчивость ниже, чем 95,6 °С. Второй – моноклинный, имеющий медово-желтую окраску. Его устойчивость колеблется от 95,6 °С и 119,3 °С.

На фото минерал сера

Во время плавки химический элемент стает движущейся жидкостью, имеющей желтый цвет. Она буреет, достигая температуры более 160 °С. А при 190 °С цвет серы превращается в темно-коричневый. После достижения отметки 190 °С наблюдается уменьшение вязкости вещества, которое все же после нагревания 300 °С стает жидкотекучим.

Другие свойства серы:

  • Практически не проводит тепла и электричества.
  • Не растворяется при погружении в воду.
  • Растворима в аммиаке, имеющем безводную структуру.
  • Также растворима в сероуглероде и других растворителях, имеющих органическую природу.

К характеристике элемента серы важно добавить и ее химические особенности. Она является активной в этом отношении. Если серу нагреть, то она может просто объединяться практически с любым химическим элементом.

На фото образец серы, добытый в Узбекистане

За исключением инертных газов. При контакте с металлами, хим. элемент образовывает сульфиды. Комнатная температура способствует тому, что элемент может вступить в реакцию с . Увеличенная температура способствует увеличению активности серы.

Рассмотрим, как поведение серы с отдельными веществами:

  • С металлами – является окислителем. Образовывает сульфиды.
  • С водородом – при высоких температурах – до 200 °С происходит активное взаимодействие.
  • С кислородом. Образовывается объединения оксидов при температурах до 280 °С.
  • С фосфором, углеродом – является окислителем. Только при отсутствии воздуха во время реакции.
  • С фтором – проявляет себя как восстановитель.
  • С веществами, имеющими сложную структуру – также как восстановитель.

Месторождения и добыча

Основной источник для получения серы – ее месторождения. В целом во всем мире насчитывается 1,4 млрд т запасов этого вещества. Ее добывают как при открытом и подземном способе выработки, так и с помощью выплавки из-под земли.

Добыча серы в вулкане Кава Иджен

Если применим последний случай, то используется вода, которую перегревают и расплавляют ею серу. В бедных рудах элемент содержится примерно в 12 %. Богатых – 25% и больше.

Распространенные типы месторождений:

  1. Стратиформный – до 60%.
  2. Солянокупольный – до 35 %.
  3. Вулканогенный – до 5%.

Первый тип связан с толщами, несущими название сульфатно-карбонатных. При этом рудные тела, которые имеют мощность до нескольких десятков метров и с размером до сотни метров находятся в сульфатных породах.

Также эти пластовые залежи можно найти посреди пород сульфатного и карбонатного происхождения. Второй тип характеризуется залежами серого цвета, которые приурочиваются к соляным куполам.

Последний тип связывают с вулканами, имеющими молодую и современную структуру. При этом рудный элемент имеет пластообразную, линзовидную форму. В нем сера может содержаться в размере 40 %. Этот тип месторождения распространен в Тихоокеанском вулканическом поясе.

Месторождение серы в Евразии находится в Туркмении, в Поволжье и других местах. Породы серы находят возле левых берегов Волги, которые тянутся от Самары. Ширина полосы пород достигает нескольких километров. При этом их можно найти вплоть до Казани.

Кристаллы серы могут иметь различные оттенки желтого

На фото сера в горной породе

В Техасе и Луизиане в кровлях соляных куполов находят огромное количество серы. Особо красивые Италийские этого элемента находят Романьи и Сицилии. А на острове Вулькано находят моноклинную серу. Элемент, который был окислен пиритом, нашли на Урале в Челябинской области.

Для добычи серы хим элемента используют разные способы. Все зависит от условия его залегания. При этом, конечно же, особое внимание уделяют безопасности.

Так как вместе с серной рудой скопляется сероводород, то необходимо особо серьезно подходить к любому способу добычи, ведь этот газ ядовитый для человека. Также и сера имеет свойство возгораться.

Чаще всего пользуются открытым способом. Так с помощью экскаваторов снимаются значительные части пород. Затем с помощью взрывов дробится рудная часть. Глыбы отправляются на фабрику для обогащения. Затем – на завод по плавке серы, где и получают серу из концентрата.

Серу часто перевозят морским транспортом

В случае глубокого залегания серы во многих объемах, используют метод Фраша. Сера расплавляется, находясь еще под землей. Затем, как и нефть выкачивается наружу через пробитую скважину. Такой подход основывается на том, что элемент легко плавится и имеет небольшую плотность.

Также известен способ разделения на центрифугах. Только этот способ имеет недостаток: сера получается с примесями. И тогда необходимо проводить ее дополнительную очистку.

В некоторых случаях используют скважный метод. Другие возможности добычи серного элемента:

  • Пароводяной.
  • Фильтрационный.
  • Термический.
  • Центрифугальный.
  • Экстракционный.

Применение серы

Большая часть добытой серы уходит, чтоб изготовить серную кислоту. А роль этого вещества очень огромная в химическом производстве. Примечательно, что для получения 1 тонны серного вещества необходимо 300 кг серы.

Бенгальские огни, которые ярко светятся и имеют много красителей, также производятся с помощью серы. Бумажная промышленность – это еще одна область, куда уходит значительная часть добытого вещества.

Серная мазь используется для лечения болезней кожи

Чаще всего применение сера находит при удовлетворении производственных нужд. Вот некоторые из них:

  • Использование в химическом производстве.
  • Для изготовления сульфитов, сульфатов.
  • Изготовление веществ для удобрения растений.
  • Чтоб получить цветные виды металлов.
  • Для придачи стали дополнительных свойств.
  • Для изготовления спичек, материалов для взрывов и пиротехники.
  • Краски, волокна из искусственных материалов – изготовляются при помощи этого элемента.
  • Для отбеливания ткани.

В некоторых случаях элемент сера входит в мази, которые лечат кожные болезни.

Цена серы

По последним новостям необходимость в сере активно растет. Стоимость на российский продукт равняется 130 долларам. На канадский вариант – 145 долларов. А вот в Ближнем Востоке цены возросли до 8 долларов, что привело к стоимости в 149 долларов.

На фото крупный экземпляр минерала сера

В аптеках можно найти молоту в порошок серу по цене от 10 до 30 рублей. К тому же есть возможность купить ее оптом. Некоторые организации предлагают по невысокой цене приобрести гранулированную техническую газовую серу .

Сера – один из наиболее важных микроэлементов для человека, отвечает за хороший внешний вид ногтевых пластин, прядей, кожных покровов. Этот элемент присутствует в составе лекарственных и косметологических препаратов, избежать дефицита поможет правильно составленный рацион.

Сера — важный элемент для организма человека

Что такое сера

Сера – обязательный элемент всех белковых соединений в организме человека, участвует в процессах обмена и регенерации, её пользу и влияние на здоровье сложно переоценить.

Для чего нужна сера:

  • создание клеток, хрящей и костей, синтез коллагена;
  • отвечает за внешний вид ногтей и прядей, здоровый цвет лица, предотвращает появление морщин;
  • ушная сера защищает органы слуха от инфекций, очищает их от пыли и грязи;
  • элемент входит в состав аминокислот, некоторых гормонов, ферментов, требуется для хорошей свёртываемости крови;
  • поддерживает баланс кислорода, уровень сахара.

Через кожу сера проникает в более глубокие слои, распадается на сульфаты и сульфиты, попадает в кровоток, разносится во все внутренние органы, но и принимать её внутрь тоже необходимо. Вещество выводится из организма через почки.

Полезные свойства серы

Серу используются в лечебных и косметологических целях. Основная задача серы – противоаллергенное и иммуномодулирующее действие, улучшение работы нервной системы, очищение организма от токсичных элементов и шлаков.

Воздействие серы на организм:

  • защищает от болезнетворных микроорганизмов;
  • поддерживает необходимый уровень жёлчи, что способствует лучшему усвоению пищи;
  • защищает клетки от негативного воздействия радиации и других вредных внешних факторов;
  • останавливает развитие суставных патологий;
  • предотвращает развитие анемии, обеспечивает нормальное поступление в ткани кислорода.

Сера взаимодействует с витаминами группы B, H, липоевой кислотой, обеспечивает энергией клетки головного мозга, способствует лучшему усвоению мышцами глюкозы.

Сера поддерживает нормальный уровень желчи в организме

Где применяется

Аптечную серу используют для лечения различных заболеваний, лекарственные средства на основе этого микроэлемента позволяют быстро устранить проявление суставных и дерматологических патологий.

От чего помогает сера:

  • аллергия и дерматологические заболевания;
  • бронхиальная астма;
  • артриты, сколиоз, бурсит, остеоартроз, миозит, растяжения;
  • судороги;
  • в качестве противовоспалительного и обезболивающего средства;
  • для укрепления иммунитета, скорейшего восстановления после длительных заболеваний;
  • для снижения потребности организма в инсулине при сахарном диабете.

В косметологии продукцию с серой используют для предупреждения раннего старения, улучшения внешнего вида кожи, придания силы и блеска волосам, укрепления ногтевых пластин.

Сера применяется в косметологии

Для наружных лечебных препаратов практикуют осаждённую (очищенную, горючую) серу, она входит в состав серной мази, которую назначают для лечения чесотки, себореи, псориаза. В сочетании с ланолином, вазелином, стеариновой кислотой микроэлемент обладает противоглистным, отшелушивающим и противовоспалительным действием – подобные препараты назначают для устранения розовых угрей, поражения лишаём волосистой части головы.

Очищенную серу в виде таблеток применяют в лечении энтеробиоза, при запорах, в качестве наружного средства для лечения дерматологических патологий. В виде порошка жёлтого цвета продукт применяют в народной и традиционной медицине, его можно применять внутрь, готовить лекарственные средства.

Гомеопатическая сера обладает слабовыраженным терапевтическим действием, её выпускают в форме гранул, принимать препарат нужно длительное время под наблюдением специалиста.

Сера полезна не только для людей, но и для животных – кормовой продукт включают в состав витаминов для животных. Используют этот микроэлемент и для обогащения удобрений в сельском хозяйстве, в производстве стали и каучука, взрывчатых веществ, пиротехники.

В каких продуктах содержится сера

Суточная потребность в сере – 0,5–1,2 г, при сбалансированном меню, наличии в рационе достаточного количества белковых продуктов необходимое количество можно получать ежедневно из пищи. Больше всего её содержится в продуктах животного происхождения, в небольших количествах его можно встретить в растительной пище.

Таблица продуктов с высоким содержанием серы

Продукт Содержание серы (мг)
Мясо кролика, курицы, индейки 180–240
Щука, окунь, сардина, горбуша, камбала 190–210
Соя 240–250
Зелёный горох 180–190
Сырой фундук, миндаль 170–190
Яйца куриные 170–180
Яйца перепелиные 120–130
Сгущённое молоко 70–75
Перловая, пшеничная, овсяная крупа 70–100
Репчатый лук 60–70
Рис, манка 60–70
Молоко 30–35
Капуста, картофель 30–40
Помидоры, баклажаны 12–15
Малина, земляника, крыжовник 12–18
Дыня, цитрусовые плоды 10–12

Повышенное количество серы до 3 г в сутки требуется при чрезмерных физических и умственных нагрузках, подросткам в период интенсивного роста, спортсменам.

Инструкция по применению серы

Перед применением серосодержащих препаратов следует обязательно проконсультироваться со специалистом. Только врач сможет подобрать оптимальные и безопасные дозировки препарата.

Серная мазь

Серную мазь следует наносить 1–3 раза в сутки на сухую очищенную кожу, продолжительность лечения –5–10 дней.

Порошок серы для внутреннего применения

Очищенная сера в виде порошка помогает при энтеробиозе, ожирении, проблемах с кроветворением, можно использовать и осаждённый продукт, но он часто провоцирует развитие метеоризма.

Медицинскую серу нужно принимать во время еды

Сера лучше всего усваивается при совместном употреблении её с железом и фтором. Барий, свинец, селен, молибден снижают процент всасываемости микроэлемента.

В аптеке можно приобрести витаминные пищевые добавки на основе дрожжей и серы – Эвисент, АМТ, Биотерра, они содержит все необходимые элементы для улучшения состояния волос, ногтей, для омоложения кожи лица, поддержания здоровья.

Показания к применению:

  • проявления нехватки витаминов группы B;
  • период восстановления после оперативных вмешательств и длительной болезни;
  • истощение организма, увлечение строгими диетами;
  • патологии эндокринного характера – сахарный диабет, нарушений в работе щитовидной железы, ожирение, гормональный дисбаланс;
  • болезни пищеварительной системы, ухудшение свёртываемости крови;
  • нервное, физическое, умственное переутомление;
  • для профилактики сердечно-сосудистых болезней;
  • дерматологические заболевания – угри, акне, фурункулёз.

Пивные дрожжи с серой оздоровляют кожу, волосы и ногти

Таблетки следует принимать по 6–15 шт. ежедневно в 3 приёма на протяжении 2–3 месяцев, после чего необходимо сделать перерыв на полгода.

Препараты на основе серы противопоказаны при беременности и лактации, не используют их и для лечения детей младше трёх лет.

На начальном этапе использования препаратов на основе серы могут появиться высыпания, кожа начинает сильно шелушиться, иногда наблюдается слабительный эффект – это не побочные реакции, такая реакция спровоцирована сильными антисептическими и противовоспалительными свойствами микроэлемента, все патогенные микроорганизмы вытягиваются наружу через кожные покровы.

Натуральная альтернатива жевательным резинкам, полностью состоит из смолистых соединений лиственницы, обладает антимикробным действием. Жевательная сера возвращает зубной эмали естественный цвет, предотвращает развитие кариеса, пародонтоза, пародонтита, воспалительных процессов в ротовой полости, помогает справиться с зубной болью, незаменима при стоматите, ангине. Специалисты рекомендуют жевать серу дважды в сутки по 30 минут.

Лиственничная жвачка помогает бросить курить, избежать переедания.

Жевательная сера помогает избавиться от болезней ротовой полости

Сера в народной медицине

Сера помогает избавиться от колик, предотвратить появление грыжи у детей – порошок на кончике ножа нужно добавлять в молоко или другую еду. Предварительно обязательно следует проконсультироваться с хирургом или .

  1. Порошок очищенной серы принимают по 1 г трижды в день при дерматологических проблемах. Для лечения диатеза у детей можно приготовить мазь из равного количества серы и жирной сметаны, смазывать поражённые участки 1–2 раза в сутки после водных процедур. Смесь можно использовать даже для новорождённых после предварительной консультации с педиатром.
  2. Рецепт универсальной болтушки для устранения воспалительных процессов на лице – соединить 50 мл борной кислоты с этиловым спиртом, добавить 7 г медицинской серы, 1 таблетку ацетилсалициловой кислоты. Взболтать, перелить в ёмкость из тёмного стекла, хранить в холодильнике, протирать воспалённые участки утром и вечером.

Сметана и сера хорошо подходят для лечения кожных болезней у детей

Чем опасны недостаток или избыток серы

Избыток и дефицит серы наблюдаются в организме редко. От недостатка микроэлементы страдают люди, которые употребляют мало белка, переизбыток может свидетельствовать о нарушении обменных процессов.

При недостатке серы развивается гипертония, тахикардия, кожные покровы становятся сухими, начинают шелушиться, волосы теряют блеск, ногти слоятся, ухудшается работа печени. О нехватке элемента свидетельствуют частые аллергические реакции, повышение уровня сахара, суставные и мышечные боли, запоры.

Признаки переизбытка серы:

  • кожа становится жирной, появляются прыщи, зуд;
  • светобоязнь, повышенное слезотечение, частые конъюнктивиты, ощущение присутствия инородного тела в глазах;
  • повышенная утомляемость, мигрень;
  • ухудшение аппетита, тошнота, нарушения в работе пищеварительной системы;
  • бронхит с признаками астмы;
  • снижение уровня гемоглобина.

При переизбытке серы появляются прыщи и кожа становится жирной

Накопление серы не возникает при чрезмерном употреблении продуктов, которые богаты этим микроэлементом. Отравление возможно только при длительном контакте с сернистым газом, сероводородом.

Избыток серы может привести к развитию серьёзных психических патологий, судорог, при сильном отравлении возможна потеря сознания.

Сера – незаменимый микроэлемент для красоты и крепкого здоровья. Получить её можно с продуктами питания, а при серьёзных заболеваниях приобрести в аптеке серный порошок, мази или таблетки на его основе. Нехватка и избыток элемента проявляются в виде различных патологий.

Чистая желтая сера

Минерал из класса самородных элементов. Сера представляет собой пример хорошо выраженного энантиоморфного полиморфизма. В природе образует 2 полиморфные модификации: a-сера ромбическая и b-сера моноклинная. При атмосферном давлении и температуре 95,6°С a-сера переходит в b-серу. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Смотрите так же:

СТРУКТУРА

Самородная сера обычно представлена a-серой, которая кристаллизуется в ромбической сингонии, ромбо-дипирамидальный вид симметрии. Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS 2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS 2 . Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS 2 . При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

СВОЙСТВА

Самородная сера жёлтого цвета, при наличии примесей — жёлто-коричневая, оранжевая, бурая до чёрной; содержит включения битумов, карбонатов, сульфатов, глины. Кристаллы чистой серы прозрачны или полупрозрачны, сплошные массы просвечивают в краях. Блеск смолистый до жирного. Твердость 1-2, спайности нет, излом раковистый. Плотность 2,05 -2,08 г/см 3 , хрупкая. Легко растворима в канадском бальзаме, в скипидаре и керосине. В HCl и H 2 SO 4 нерастворима. HNO 3 и царская водка окисляют серу, превращая её в H 2 SO 4 . Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов.
Наиболее стабильны циклические молекулы S 8 , имеющие форму короны, образующие ромбическую и моноклинную серу. Это кристаллическая сера - хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S 4 , S 6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). Формулу серы чаще всего записывают просто S, так как она, хотя и имеет молекулярную структуру, является смесью простых веществ с разными молекулами.
Плавление серы сопровождается заметным увеличением объёма (примерно 15 %). Расплавленная сера представляет собой жёлтую легкоподвижную жидкость, которая выше 160 °C превращается в очень вязкую тёмно-коричневую массу. Наибольшую вязкость расплав серы приобретает при температуре 190 °C; дальнейшее повышение температуры сопровождается уменьшением вязкости и выше 300 °C расплавленная сера снова становится подвижной. Это связано с тем, что при нагревании серы она постепенно полимеризуется, увеличивая длину цепочки с повышением температуры. При нагревании серы свыше 190 °C полимерные звенья начинают рушиться.
Сера может служить простейшим примером электрета. При трении сера приобретает сильный отрицательный заряд.

МОРФОЛОГИЯ

Образует усечённо-дипирамидальные, реже дипирамидальные, пинакоидальные или толстопризматические кристаллы, а также плотные скрытокристаллические, сливные, зернистые, реже тонковолокнистые агрегаты. Главные формы на кристаллах: дипирамиды (111) и (113), призмы (011) и (101), пинакоид (001). Также сростки и друзы кристаллов, скелетные кристаллы, псевдосталактиты, порошковатые и землистые массы, налёты и примазки. Для кристаллов характерны множественные параллельные срастания.

ПРОИСХОЖДЕНИЕ

Сера образуется при вулканических извержениях, при выветривании сульфидов, при разложении гипсоносных осадочных толщ, а также в связи с деятельностью бактерий. Главные типы месторождений самородной серы — вулканогенные и экзогенные (хемогенно-осадочные). Экзогенные месторождения преобладают; они связаны с гипсо-ангидритами, которые под воздействием выделений углеводородов и сероводорода восстанавливаются и замещаются серно-кальцитовыми рудами. Такой инфильтрационно-метасоматический генезис имеют все крупнейшие месторождения. Самородная сера часто образуется (кроме крупных cкоплений) в результате окисления H 2 S. Геохимические процессы её образования существенно активизируются микроорганизмами (сульфатредуцирующими и тионовыми бактериями). Сопутствующие минералы — кальцит, арагонит, гипс, ангидрит, целестин, иногда битумы. Среди вулканогенных месторождений самородной серы главное значение имеют гидротермально-метасоматические (например, в Японии), образованные сероносными кварцитами и опалитами, и вулканогенно-осадочные сероносные илы кратерных озёр. Образуется также при фумарольной деятельности. Образуясь в условиях земной поверхности, самородная сера является всё же не очень устойчивой и, постепенно окисляясь, даёт начало сульфатам, гл. образом гипсу.
Используется в производстве серной кислоты (около 50% добываемого количества). В 1890 г. Герман Фраш предложил плавить серу под землёй и извлекать на поверхность через скважины, и в настоящее время месторождения серы разрабатывают главным образом путём выплавки самородной серы из пластов под землёй непосредственно в местах её залегания. Сера также в больших количествах содержится в природном газе (в виде сероводорода и сернистого ангидрида), при добыче газа она откладывается на стенках труб, выводя их из строя, поэтому её улавливают из газа как можно быстрее после добычи.

ПРИМЕНЕНИЕ

Примерно половина производимой серы используется в производстве серной кислоты. Серу применяют для вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная - лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта, а в качестве заместителя портландцемента - для получения серобетона. Сера находит применение для производства пиротехнических составов, ранее использовалась в производстве пороха, применяется для производства спичек.

Сера (англ. Sulphur) — S

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.03-10
Nickel-Strunz (10-ое издание) 1.CC.05
Dana (7-ое издание) 1.3.4.1
Dana (8-ое издание) 1.3.5.1
Hey’s CIM Ref. 1.51

Сера в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. Она упоминается в Библии, поэмах Гомера и других. Сера входила в состав "священных" курений при религиозных обрядах; считалось, что запах горящей Серы отгоняет злых духов. Сера давно стала необходимым компонентом зажигательных смесей для военных целей, например "греческого огня" (10 в. н. э.). Около 8 века в Китае стали использовать Серу в пиротехнических целях. Издавна Серой и ее соединениями лечили кожные заболевания. В период арабской алхимии возникла гипотеза, согласно которой Сера (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу Серы установил А. Л. Лавуазье и включил ее в список неметаллических простых тел (1789). В 1822 году Э. Мичерлих обнаружил аллотропию Серы.

Распространение Серы в природе. Сера относится к весьма распространенным химическим элементам (кларк 4,7·10 -2); встречается в свободном состоянии (самородная сера) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов Серы, образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов Сера (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H 2 S и сульфидов. Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации Серы - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9·10 -2 %), подземных водах, в озерах и солончаках. В глинах и сланцах Серы в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот Серы: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником Сера в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO 2 и H 2 S. Хозяйственная деятельность человека ускорила миграцию Серы; интенсифицировалось окисление сульфидов.

Физические свойства Серы. Сера - твердое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая α-S лимонно-желтого цвета, плотность 2,07 г/см 3 , t пл 112,8 °С, устойчива ниже 95,6 °С; моноклинная β-S медово-желтого цвета, плотность 1,96 г/см 3 , t пл 119,3 °С, устойчива между 95,6 °С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S 8 с энергией связи S-S 225,7 кдж/моль.

При плавлении Сера превращается в подвижную желтую жидкость, которая выше 160 °С буреет, а около 190 °С становится вязкой темно-коричневой массой. Выше 190 °С вязкость уменьшается, а при 300 °С Сера вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 °С кольца S 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 °С уменьшает среднюю длину таких цепей.

Если расплавленную Серу, нагретую до 250-300 °С, влить тонкой струей в холодную воду, то получается коричнево-желтая упругая масса (пластическая Сера). Она лишь частично растворяется в сероуглероде, в осадке остается рыхлый порошок. Растворимая в CS 2 модификация называется λ-S, а нерастворимая - μ-S. При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую α-S. t кип Серы 444,6 °С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S 8 , существуют также S 6 , S 4 и S 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900 °С остаются лишь S 2 , которые приблизительно при 1500 °С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров Серы получается устойчивая ниже -80 °С пурпурная модификация, образованная молекулами S 2 .

Сера - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и других).

Химические свойства Серы. Конфигурация внешних электронов атома S 3s 2 Зр 4 . В соединениях Сера проявляет степени окисления -2, +4, +6. Сера химически активна и особенно легко при нагревании соединяется почти со всеми элементами, за исключением N 2 , I 2 , Au, Pt и инертных газов. С О 2 на воздухе выше 300 °С образует оксиды: SO 2 - сернистый ангидрид и SO 3 - серный ангидрид, из которых получают соответственно сернистую кислоту и серную кислоту, а также их соли сульфиты и сульфаты. Уже на холоду S энергично соединяется с F 2 , при нагревании реагирует с Cl 2 ; с бромом Сера образует только S 2 Br 2 , иодиды серы неустойчивы. При нагревании (150-200 °С) наступает обратимая реакция с Н 2 с получением сернистого водорода. Сера образует также многосернистые водороды общей формулы H 2 S Х, так называемые сульфаны. Известны многочисленные сераорганические соединения.

При нагревании Сера взаимодействует с металлами, образуя соответствующие сернистые соединения (сульфиды) и многосернистые металлы (полисульфиды). При температуре 800-900 °С пары Серы реагируют с углеродом, образуя сероуглерод CS 2 . Соединения Серы с азотом (N 4 S 4 и N 2 S 5) могут быть получены только косвенным путем.

Получение Серы. Элементарную Сера получают из серы самородной, а также окислением сернистого водорода и восстановлением сернистого ангидрида. Источник сернистого водорода для производства Серы - коксовые, природные газы, газы крекинга нефти. Разработаны многочисленные методы переработки H 2 S; наибольшее значение имеют следующие: 1) H 2 S извлекают из газов раствором моногидротиоарсената натрия:

Na 2 HAsS 2 O 2 + H 2 S = Na 2 HAsS 3 O + Н 2 О.

Затем продувкой воздуха через раствор осаждают Сера в свободном виде:

NaHAsS 3 O + ½O 2 = Na 2 HAsS 2 O 2 + S.

2) H 2 S выделяют из газов в концентрированном виде. Затем его основные масса окисляется кислородом воздуха до Серы и частично до SO 2 . После охлаждения H 2 S и образовавшиеся газы (SO 2 , N 2 , CO 2) поступают в два последовательных конвертора, где в присутствии катализатора (активированный боксит или специально изготовляемый алюмогель) происходит реакция:

2H 2 S + SO 2 = 3S + 2Н 2 О.

В основе получения Сера из SO 2 лежит реакция восстановления его углем или природными углеводородными газами. Иногда это производство сочетается с переработкой пиритных руд.

Сорта Серы. Выплавленная непосредственно из серных руд Сера называется природной комовой; полученная из Н 2S и SO 2 - газовой комовой. Природная комовая Сера, очищенная перегонкой, называется рафинированной.

Сконденсированная из паров при температуре выше точки плавления в жидком состоянии и затем разлитая в формы - черенковой Серой. При конденсации Серы ниже точки плавления на стенках конденсационных камер образуется мелкий порошок Серы - серный цвет. Особо высоко дисперсная Сера носит название коллоидной.

Применение Серы. Сера применяется в первую очередь для получения серной кислоты; в бумажной промышленности (для получения сульфитцеллюлозы); в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника); в резиновой промышленности (вулканизующий агент); в производстве красителей и светящихся составов; для получения черного (охотничьего) пороха; в производстве спичек.

Сера в организме. В виде органических и неорганических соединений Сера постоянно присутствует во всех живых организмах и является важным биогенным элементом. Ее среднее содержание в расчете на сухое вещество составляет: в морских растениях около 1,2%, наземных - 0,3%, в морских животных 0,5-2%, наземных - 0,5%. Биологическая роль Серы определяется тем, что она входит в состав широко распространенных в живой природе соединений: аминокислот (метионин, цистеин), и следовательно белков и пептидов; коферментов (кофермент А, липоевая кислота), витаминов (биотин, тиамин), глутатиона и других. Сульфгидрилъные группы (-SH) остатков цистеина играют важную роль в структуре и каталитической активности многих ферментов. Образуя дисульфидные связи (-S-S-) внутри отдельных полипептидных цепей и между ними, эти группы участвуют в поддержании пространственной структуры молекул белков. У животных Сера обнаружена также в виде органических сульфатов и сульфокислот - хондроитинсерной кислоты (в хрящах и костях), таурохолиевой кислоты (в желчи), гепарина, таурина. В некоторых железосодержащих белках (например, ферродоксинах) Сера обнаружена в форме кислотолабильного сульфида. Сера способна к образованию богатых энергией связей в макроэргических соединениях.

Неорганические соединения Сера в организмах высших животных обнаружены в небольших количествах, главным образом в виде сульфатов (в крови, моче), а также роданидов (в слюне, желудочном соке, молоке, моче). Морские организмы богаче неорганическими соединениями Серы, чем пресноводные и наземные. Для растений и многих микроорганизмов сульфат (SO 4 2-) наряду с фосфатом и нитратом служит важнейшим источником минерального питания. Перед включением в органические соединения Сера претерпевает изменения в валентности и превращается затем в органических форму в своем наименее окисленном состоянии; таким образом Сера широко участвует в окислительно-восстановительных реакциях в клетках.

В клетках сульфаты, взаимодействуя с аденозинтрифосфатом (АТФ), превращаются в активную форму - аденилилсульфат.

Катализирующий эту реакцию фермент - сульфурилаза (АТФ:сульфат -аденилилтрансфераза) широко распространен в природе. В такой активированной форме сульфонильная группа подвергается дальнейшим превращениям - переносится на другой акцептор или восстанавливается.

Животные усваивают Серу в составе органических соединений. Автотрофные организмы получают всю Серу, содержащуюся в клетках, из неорганических соединений, главным образом в виде сульфатов. Способностью к автотрофному усвоению Серы обладают высшие растения, многие водоросли, грибы и бактерии. (Из культуры бактерий был выделен специальный белок, осуществляющий перенос сульфата через клеточную мембрану из среды в клетку.) Большую роль в круговороте Серы в природе играют микроорганизмы - десульфурирующие бактерии и серобактерии. Многие разрабатываемые месторождения Серы - биогенного происхождения. Сера входит в состав антибиотиков (пенициллины, цефалоспорины); ее соединения используются в качестве радиозащитных средств, средств защиты растений.

Содержание статьи

СЕРА, S (sulfur), неметаллический химический элемент, член семейства халькогенов (O, S, Se, Te и Po) – VI группы периодической системы элементов. Cера, как и многие ее применения, известны с далекой древности. А.Лавуазье утверждал, что сера – это элемент. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Применение.

Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука . Ведущее место в добыче серы занимают США, страны СНГ и Канада.

Распространенность в природе.

Сера встречается в свободном состоянии (самородная сера). Кроме того, имеются огромные запасы серы в виде сульфидных руд, прежде всего руд свинца (свинцовый блеск), цинка (цинковая обманка), меди (медный блеск) и железа (пирит). При извлечении металлов из этих руд освобождаются от серы обычно обжигом в присутствии кислорода, при этом образуется диоксид серы(IV), который часто выбрасывается в атмосферу без использования. Кроме сульфидных руд достаточно много серы встречается в виде сульфатов, например, сульфата кальция (гипс), сульфата бария (барит). В морской воде и многих минеральных водах присутствуют растворимые в воде сульфаты магния и натрия. В некоторых минеральных водах встречается сульфид водорода (сероводород). В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%.

Свойства.

Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера – ромбическая (самородная сера, a -S) и моноклинная (призматическая сера, b -S); аморфная – коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая – сублимированная (серный цвет).

Кристаллическая сера.

Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS 2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS 2 . Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS 2 . При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

Некристаллическая сера.

В дополнение к этим кристаллическим и аморфным формам существует промежуточная форма, известная как серный цвет или сублимированная сера, которая получается конденсацией паров серы, минуя жидкую фазу. Она состоит из мельчайших зерен, имеющих центр кристаллизации и аморфную поверхность. Эта форма медленно и не полностью растворяется в CS 2 . После обработки аммиаком для очистки от таких примесей, как мышьяк, получается продукт, известный в медицине как промытая сера, которая используется аналогично коллоидной сере.

Жидкое состояние.

Молекулы серы состоят из замкнутой цепочки восьми атомов (S 8). Жидкая сера обладает необычным свойством: с повышением температуры ее вязкость увеличивается. Ниже 160° С сера – типичная жидкость желтоватого цвета, ее состав соответствует формуле S 8 и обозначается l -S. С повышением температуры кольцевые молекулы S 8 начинают разрываться и соединяться друг с другом, образуя длинные цепи (m -S), цвет жидкой серы становится темнокрасным, вязкость возрастает, достигая максимума при 200–250° С. При дальнейшем повышении температуры жидкая сера светлеет, длинные цепи рвутся, образуя короткие, с меньшей способностью к переплетению, что приводит к меньшей вязкости.

Газ.

Сера кипит при 444,6° C, образуя оранжево-желтые пары, состоящие преимущественно из молекул S 8 . С повышением температуры окраска паров переходит в темнокрасную, затем в палевую, а при 650° C в соломенно-желтую. При дальнейшем нагревании молекулы S 8 диссоциируют, образуя равновесные формы S 6 , S 4 и S 2 при разных температурах. И, наконец, при >1000° С пары состоят практически из молекул S 2 , а при 2000° С – из одноатомных молекул.

Химические свойства.

Сера – типичный неметалл. На внешней электронной оболочке у нее шесть электронов, и она легче присоединяет электроны других элементов, чем отдает свои. Со многими металлами реагирует с выделением тепла (например, при соединении с медью, железом, цинком). Она соединяется и почти со всеми неметаллами, хотя не так энергично.

Соединения.

Диоксид серы

образуется при сжигании серы на воздухе, в частности, при обжиге сульфидных руд металлов. Диоксид серы – бесцветный газ с удушающим запахом. Это ангидрид сернистой кислоты, он легко растворяется в воде с образованием сернистой кислоты. Диоксид легко сжижается (т. кип. –10° C) и его хранят в стальных цилиндрах. Диоксид используют в производстве серной кислоты, в холодильных установках, для отбеливания текстиля, древесной массы, соломы, свекловичного сахара, для консервации фруктов и овощей, для дезинфекции, в пивоваренных и пищевых производствах.

Сернистая кислота

H 2 SO 3 существует только в разбавленных растворах (менее 6%). Это слабая кислота, образующая средние и кислые соли (сульфиты и гидросульфиты). Сернистая кислота – хороший восстановитель, реагируя с кислородом образует серную кислоту. Сернистая кислота находит несколько областей применения, среди которых – обесцвечивание шелка, шерсти, бумаги, древесной массы и аналогичных веществ. Она используется как антисептик и консервант, особенно для предотвращения брожения вина в бочках, для предотвращения ферментации зерна при извлечении крахмала. Кислоту используют и для сохранения продуктов. Наибольшее значение из ее солей имеет гидросульфит кальция Ca(HSO 3) 2 , используемый при переработке древесной щепы в целлюлозу.

Триоксид серы

SO 3 (серный ангидрид), образующий с водой серную кислоту, представляет собой либо бесцветную жидкость, либо белое кристаллическое вещество (кристаллизуется при 16,8° С; т. кип. 44,7° С). Он образуется при окислении диоксида серы кислородом в присутствии соответствующего катализатора (платина, пентаоксид ванадия). Триоксид серы сильно дымит во влажном воздухе и растворяется в воде, образуя серную кислоту и выделяя много тепла. Его используют в производстве серной кислоты и получении синтетических органических веществ.

Серная кислота

H 2 SO 4 . Безводная H 2 SO 4 – бесцветная маслянистая жидкость, растворяет SO 3 , образуя олеум. Смешивается с водой в любых отношениях. При растворении в воде образуются гидраты с выделением очень большого количества теплоты; поэтому во избежание разбрызгивания кислоты обычно при растворении осторожно, постепенно добавляют кислоту в воду, а не наоборот. Концентрированная кислота хорошо поглощает пары воды и поэтому применяется для осушения газов. По этой же причине она приводит к обугливанию органических веществ, особенно углеводов (крахмала, сахара и т.п.). При попадании на кожу вызывает сильные ожоги, пары разъедают слизистую дыхательных путей и глаз. Серная кислота – сильный окислитель. Конц. H 2 SO 4 окисляет HI, HBr до I 2 и Br 2 соответственно, уголь – до CO 2 , серу – до SO 2 , металлы – до сульфатов. Разбавленная кислота тоже окисляет металлы, стоящие в ряду напряжений до водорода. H 2 SO 4 – сильная двухосновная кислота, образующая средние и кислые соли – сульфаты и гидросульфаты; большинство ее солей растворимы в воде, за исключением сульфатов бария, стронция и свинца, малорастворим сульфат кальция.

Серная кислота – один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме:

Бóльшая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель.

Тиосерная кислота

H 2 S 2 O 3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na 2 S 2 O 3 – бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na 2 SO 3 с серным цветом. Тиосульфат (или гипосульфит) натрия используется в фотографии как закрепитель (фиксаж).

Сульфонал

(CH 3) 2 C(SO 2 C 2 H 5) 2 – белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство.

Сульфид водорода

H 2 S (сероводород) – бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм 3), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма.

Монохлорид серы

S 2 Cl 2 – дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы – хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC 2 H 4) 2 S – токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия.

Дисульфид углерода

CS 2 (сероуглерод) – бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS 2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46° C). Сероуглерод – эффективный растворитель жиров, масел, каучука и резин – широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв.