Процесс ионизации неспаренных электронов. Неспаренный электрон





От строения атома зависит его радиус, энергия ионизации, сродство к электрону, электроотрицательность и другие параметры атома. Электронные оболочки атомов определяют оптические, электрические, магнитные, а главное - химические свойства атомов и молекул, а также большинство свойств твердых тел.

Магнитные характеристики атома

Электрон обладает собственным магнитным моментом , который квантуется по направлению параллельно или противоположно приложенному магнитному полю. Если два электрона, занимающие одну орбиталь, имеют противоположно направленные спины (согласно принципу Паули), то они гасят друг друга. В этом случае говорят, что электроны спаренные . Атомы, имеющие только спаренные электроны, выталкиваются из магнитного поля. Такие атомы называются диамагнитными . Атомы, имеющие один или несколько неспаренных электронов, втягиваются в магнитное поле. Они называются диамагнитными.

Магнитный момент атома, характеризующий интенсивность взаимодействия атома с магнитным полем, практически пропорционален числу неспаренных электронов.

Особенности электронной структуры атомов различных элементов отражаются в таких энергетических характеристиках, как энергия ионизации и сродство к электрону.

Энергия ионизации

Энергия (потенциал) ионизации атома E i - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением

Х = Х + + е

Ее значения известны для атомов всех элементов Периодической системы. Например, энергия ионизации атома водорода соответствует переходу электрона с 1s -подуровня энергии (−1312,1 кДж/моль) на подуровень с нулевой энергией и равна +1312,1 кДж/моль.

В изменении первых потенциалов ионизации, соответствующих удалению одного электрона, атомов явно выражена периодичность при увеличении порядкового номера атома:

При движении слева направо по периоду энергия ионизации, вообще говоря, постепенно увеличивается, при увеличении порядкового номера в пределах группы - уменьшается. Минимальные первые потенциалы ионизации имеют щелочные металлы, максимальные - благородные газы.

Для одного и того же атома вторая, третья и последующие энергии ионизации всегда увеличиваются, так как электрон приходится отрывать от положительно заряженного иона. Например, для атома лития первая, вторая и третья энергии ионизации равны 520,3, 7298,1 и 11814,9 кДж/моль, соответственно.

Последовательность отрыва электронов - обычна обратная последовательности заселения орбиталей электронами в соответствии с принципом минимума энергии. Однако элементы, у которых заселяются d -орбитали, являются исключениями - в первую очередь они теряют не d -, а s -электроны.

Сродство к электрону

Сродство атома к электрону A e - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона Х − :

Х − = Х + е

Наибольшим сродством к электрону обладают атомы галогенов. Например, для атома фтора присоединение электрона сопровождается выделением 327,9 кДж/моль энергии. Для ряда элементов сродство к электрону близко к нулю или отрицательно, что значит отсутствие устойчивого аниона для данного элемента.

Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации. Однако для некоторых пар элементов имеются исключения:

Элемент E i , кДж/моль A e , кДж/моль
F 1681 −238
Cl 1251 −349
N 1402 7
P 1012 −71
O 1314 −141
S 1000 −200

Объяснение этому можно дать, основываясь на меньших размерах первых атомов и большем электрон-электронном отталкивании в них.

Электроотрицательность

Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Американский физик Малликен предложил определять электроотрицательность как среднеарифметическую величину между потенциалом ионизации и сродством к электрону:

χ = 1/2 (E i + A e )

Трудность применения такого способа состоит в том, что значения сродства к электрону известны не для всех элементов.

  • Глава 2. Теория пробоя Таунсенда
  • 2.1. Первый коэффициент Таунсенда
  • 2.2. Прилипание электронов к атомам и молекулам. Отрыв электронов от отрицательных ионов
  • 2.3. Второй коэффициент Таунсенда
  • 2.4. Электронная лавина
  • 2.5. Условие самостоятельности разряда. Закон Пашена
  • 2.6. Отступления от закона Пашена
  • 2.7. Время разряда
  • Глава 3. Пробой газа в различных частотных диапазонах
  • 3.1. СВЧ-пробой
  • 3.2. ВЧ-пробой
  • 3.3. Оптический пробой
  • Глава 4. Искровой разряд в газах
  • 4.1. Наблюдения за развитием разряда в ионизационной камере
  • 4.2. Схемы развития лавинно-стримерных процессов
  • 4.3. Граница таунсендовского и стримерного разрядов
  • 4.4. Пробой газов в наносекундном диапазоне времени
  • 4.5. Длинная искра, разряд в виде молнии
  • 4.6. Главный разряд
  • Глава 5. Самостоятельные разряды в газах
  • 5.1. Тихий разряд
  • 5.2. Тлеющий разряд
  • 5.3. Дуговой разряд
  • 5.4. Коронный разряд
  • 5.5. Разряд по поверхности твердого диэлектрика
  • 5.6. Зависимость пробивного напряжения газа от межэлектродного расстояния
  • Список литературы к разделу «Пробой газов»
  • Часть II. ПРОБОЙ ТВЕРДЫХ ДИЭЛЕКТРИКОВ
  • Глава 1. Тепловой пробой твердых диэлектриков
  • 1.1. Теория теплового пробоя Вагнера
  • 1.2. Другие теории теплового пробоя
  • Глава. 2. Классические теории электрического пробоя
  • 2.1. Теория Роговского. Разрыв ионной кристаллической решетки
  • 2.2. Разрыв твердого диэлектрика по микротрещине. Теория Горовица
  • 2.3. Теория А. Ф. Иоффе
  • 2.4. Теория А.А. Смурова. Теория электростатической ионизации
  • Глава 3. Квантово-механические теории электрического пробоя неударным механизмом
  • 3.1. Теория Зинера. Теория безэлектродного пробоя
  • 3.2. Теория Фаулера. Пробой электродного происхождения
  • 3.3. Теория Я.И. Френкеля. Теория термической ионизации
  • Глава 4. Теории пробоя твердых диэлектриков вследствие ударной ионизации электронами
  • 4.1. Теории Хиппеля и Фрелиха
  • 4.2. Теории пробоя, основанные на решении кинетического уравнения. Теория Чуенкова
  • 4.3. Некоторые замечания по теориям пробоя, основанных на рассмотрении механизма ударной ионизации электронами
  • Глава 5. Экспериментальные данные, укладывающиеся в представления о пробое твердых диэлектриков ударной ионизацией электронами
  • 5.1. Стадии пробоя твердых диэлектриков
  • 5.2. Развитие разряда в однородном и неоднородном полях в твердых диэлектриках
  • 5.3. Эффект полярности при пробое в неоднородном электрическом поле
  • 5.4. Влияние материала электродов на пробой твердых диэлектриков
  • 5.5. Зависимость времени разряда от толщины диэлектрика. Формирование многолавинно-стримерного механизма разряда
  • Глава 6. Процессы, наблюдаемые в диэлектриках в области сверхсильных электрических полей
  • 6.1. Электрическое упрочнение
  • 6.2. Электронные токи в микронных слоях ЩГК в сильных электрических полях
  • 6.3. Свечение в микронных слоях ЩГК
  • 6.4. Дислокации и трещины в ЩГК перед пробоем
  • Глава 7. Другие теории пробоя твердых диэлектриков
  • 7.2. Энергетический анализ электрической прочности твердых диэлектриков по теории Ю.Н. Вершинина
  • 7.4. Термофлуктуационная теория разрушения твердых диэлектриков электрическим полем В.С. Дмитревского
  • 7.5. Особенности пробоя полимерных диэлектриков. Теория электрического пробоя Артбауэра
  • 7.6. Теория электромеханического пробоя Старка и Гартона
  • Глава 8. Некоторые особенности и закономерности электрического пробоя твердых диэлектриков
  • 8.1. Статистический характер пробоя твердых диэлектриков
  • 8.2. Минимальное пробивное напряжение
  • 8.3. Неполный пробой и последовательный пробой
  • 8.4. Кристаллографические эффекты при пробое кристаллов
  • 8.5. Зависимость электрической прочности от температуры
  • 8.6. Зависимость электрической прочности от времени воздействия напряжения
  • 8.7. Пробой диэлектрических пленок
  • 8.8. Формованные системы металл–диэлектрик–металл (МДМ)
  • 8.9. Заключение по механизму электрического пробоя твердых диэлектриков
  • Глава 9. Электрохимический пробой
  • 9.1. Электрическое старение органической изоляции
  • 9.2. Кратковременное пробивное напряжение
  • 9.3. Старение бумажной изоляции
  • 9.4. Старение неорганических диэлектриков
  • Список литературы к разделу «Пробой твердых диэлектриков»
  • Часть III. ПРОБОЙ ЖИДКИХ ДИЭЛЕКТРИКОВ
  • Глава 1. Пробой жидкостей высокой степени очистки
  • 1.1. Проводимость жидких диэлектриков
  • 1.2. Пробой жидкостей вследствие ударной ионизации электронами
  • 1.3. Пробой жидкостей неударным механизмом
  • Глава 2. Пробой жидких диэлектриков технической очистки
  • 2.1. Влияние влаги
  • 2.2. Влияние механических загрязнений
  • 2.3. Влияние газовых пузырьков
  • 2.4. Теории теплового пробоя жидких диэлектриков
  • 2.5. Вольтолизационная теория пробоя жидких диэлектриков
  • 2.6. Влияние формы и размеров электродов, их материала, состояния поверхности и расстояния между ними на пробой жидкостей
  • 2.7. Развитие разряда и импульсный пробой в жидкостях
  • 2.8. Влияние ультразвука на электрическую прочность
  • 2.9. Внедрение разряда в твердый диэлектрик, погруженный в изолирующую жидкость
  • Список литературы к разделу «Пробой жидких диэлектриков»
  • ОГЛАВЛЕНИЕ
  • Практическое значение этого соотношения заключается в том, что, зная μ , которое сравнительно легко измерить, можно определить D ,

    которое определить непосредственно довольно трудно.

    Амбиполярная диффузия

    В плазме газового разряда диффундируют как электроны, так и ионы. Процесс диффузии представляется следующим. Электроны, обладающие большей подвижностью, быстрее диффундируют, чем ионы. За счет этого создается электрическое поле между электронами и отставшими положительными ионами. Это поле тормозит дальнейшую диффузию электронов, и наоборот – ускоряет диффузию ионов. Когда ионы подтянутся к электронам, указанное электрическое поле ослабевает, и электроны вновь отрываются от ионов. Этот процесс протекает непрерывно. Такая диффузия получила название амбиполярной диффузии, коэффициент которой

    D амб =

    D e μ и + D иμ e

    μ e + μ и

    где D e ,D и

    – коэффициенты диффузии электронов и ионов; μ е , μ и –

    подвижность электронов и ионов.

    Так как D e >> D и и μ е >> μ и , то оказывается, что

    D иμ е≈ D e μ и ,

    поэтому D амб ≈ 2D и . Такая диффузия имеет место, например, в положительном столбе тлеющего разряда.

    1.6. Возбуждение и ионизация атомов и молекул

    Известно, что атом состоит из положительного иона и электронов, число которых определяется номером элемента в периодической таблице Д.И. Менделеева. Электроны в атоме находятся на определенных энергетических уровнях. Если электрон получает извне некоторую энергию, он переходит на более высокий уровень, который называется уровнем возбуждения .

    Обычно электрон находится на уровне возбуждения непродолжительное время, порядка 10-8 с. При получении электроном значительной энергии он удаляется от ядра на столь большое расстояние, что может потерять с ним связь и становится свободным. Наименее связанными с ядром являются валентные электроны, которые находятся на более высоких энергетических уровнях и поэтому легче отрываются от атома. Процесс отрыва электрона от атома называется ионизацией.

    На рис. 1.3 показана энергетическая картина валентного электрона в атоме. Здесь W o – основной уровень электрона, W мст – метастабиль-

    ный уровень, W 1 ,W 2 – уровни возбуждения (первый, второй и т.д.).

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    Рис. 1.3. Энергетическая картина электрона в атоме

    W ′ = 0 – это состояние, когда электрон теряет связь с атомом. Величина W и = W ′ − W o являет-

    ся энергией ионизации. Значения указанных уровней для некоторых газов приведены в табл. 1.3 .

    Метастабильный уровень характеризуется тем, что на него и с него переходы электрона запрещены. Этот уровень заполняется так называемым обменным взаимодействием, когда электрон извне садится на уровень W мст , а избыточный

    электрон покидает атом. Метастабильные уровни играют важную роль в процессах, протекающих в газоразрядной плазме, т.к. на нормальном уровне возбуждения электрон находится в течение 10-8 с, а на метастабильном уровне – 10-2 ÷ 10-3 с.

    Таблица 1.3

    Энергия, эВ

    CО2

    W мст

    Процесс возбуждения атомных частиц определяет и ионизацию посредством так называемого явления диффузии резонансного излучения. Это явление заключается в том, что возбужденный атом, переходя в нормальное состояние, испускает квант света, который возбуждает следующий атом, и так далее. Область диффузии резонансного излучения определяется длиной свободного пробега фотона λ ν , которая зави-

    сит от плотности атомных частиц n . Так, при n= 1016 см-3 λ ν =10-2 ÷ 1

    см. Явление диффузии резонансного излучения также определяется наличием метастабильных уровней.

    Ступенчатая ионизация может происходить по разным схемам: а) первый электрон или фотон производит возбуждение нейтраль-

    ной частицы, а второй электрон или фотон сообщает валентному электрону добавочную энергию, вызывая ионизацию этой нейтральной частицы;

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    денного атома, и в этот момент возбужденный атом переходит в нормальное состояние и излучает квант света, который увеличивает энер-

    в) наконец, два возбужденных атома оказываются вблизи друг друга. При этом один из них переходит в нормальное состояние и испускает квант света, который ионизирует второй атом.

    Следует отметить, что ступенчатая ионизация становится эффективной, когда концентрация быстрых электронов (с энергией, близкой

    к W и ), фотонов и возбужденных атомов достаточно велика. Это име-

    ет место, когда ионизация становится достаточно интенсивной. В свою очередь, падающие на атомы и молекулы фотоны также могут производить возбуждение и ионизацию (прямую или ступенчатую). Источником фотонов в газовом разряде является излучение электронной лавины.

    1.6.1. Возбуждение и ионизация молекул

    Для молекулярных газов необходимо учитывать возможность возбуждения самих молекул, которые в отличие от атомов совершают вращательные и колебательные движения . Эти движения также квантуются. Энергия скачка при вращательном движении составляет 10-3÷ 10-1 эВ, а при колебательном движении – 10-2 ÷ 1 эВ.

    При упругом соударении электрона с атомом электрон теряет не-

    значительную часть своей энергии

    W = 2

    ≈ 10

    − 4 W . При соуда-

    рении электрона с молекулой электрон возбуждает вращательное и колебательное движение молекул. В последнем случае электрон теряет особенно значительную энергию до 10-1 ÷ 1 эВ. Поэтому возбуждение колебательных движений молекул является эффективным механизмом отбора энергии от электрона. При наличии такого механизма ускорение электрона затрудняется, и требуется более сильное поле для того, чтобы электрон мог набрать энергию, достаточную для ионизации. Поэтому для пробоя молекулярного газа требуется более высокое напряжение, чем для пробоя атомарного (инертного) газа при равном межэлектродном расстоянии и равном давлении. Это демонстрируют данные табл. 1.4, где проведено сравнение величин λ t ,S t и U пр атом-

    ных и молекулярных газов при атмосферном давлении и d = 1.3 см.

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    Таблица 1.4

    Характеристика

    Наименование газа

    S t 10 − 16 , см2

    U пр , кВ

    Из табл. 1.4 видно, что хотя транспортные сечения S t для молеку-

    лярных газов и аргона соизмеримы, однако пробивное напряжение аргона существенно ниже.

    1.7. Термическая ионизация

    При высоких температурах может происходить ионизация газа за счет повышения кинетической энергии атомных частиц, называемая термической ионизацией. Так, для паров Na, K, Cs термическая ионизация значительна при температуре в несколько тысяч градусов, а для воздуха при температуре порядка 104 град . Вероятность термической ионизации растет с повышением температуры и уменьшением потенциала ионизации атомов (молекул). При обычных температурах термическая ионизация незначительна и практически может оказать влияние только при развитии дугового разряда.

    Однако следует отметить, что еще в 1951 г. Хорнбеком и Молнаром было обнаружено, что при пропускании моноэнергетических электронов через холодные инертные газы происходит образование ионов при энергии электронов, достаточных только для возбуждения, но не для ионизации атомов. Этот процесс был назван ассоциативной ионизацией.

    Ассоциативная ионизация иногда играет важную роль при распространении волн ионизации и искровых разрядов в местах, где электронов еще очень мало. Возбужденные атомы образуются там в результате поглощения квантов света, выходящих из уже ионизированных областей. В умеренно нагретом воздухе, при температурах 4000÷ 8000 К, молекулы в достаточной степени диссоциированы, но электронов еще слишком мало для развития лавины. Основным механизмом ионизации при этом является реакция, в которой участвуют невозбужденные атомы N и О .

    Ассоциативная ионизация протекает по следующей схеме N + O + 2. 8 эВ ↔ NO + + q . Недостающая энергия 2.8 эВ черпается за счет кинетической энергии относительного движения атомов.

    ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

    5. Химическая связь

    Согласно теории химической связи, наибольшей устойчивостью обладают внешние оболочки из двух или восьми электронов (электронные группировки благородных газов). Атомы, имеющие на внешней оболочке менее восьми (или иногда двух) электронов, стремятся приобрести структуру благородных газов. Такая закономерность позволила В. Косселю и Г. Льюису сформулировать положение, которое является основным при рассмотрении условий образования молекулы: “При образовании молекулы в ходе химической реакции атомы стремятся приобрести устойчивую восьмиэлектронную (октет) или двухэлектронную (дублет) оболочки”.

    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к электронным оболочкам. Таковы водородная и металлическая связи.

    Валентность элементов в соединениях.

    Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности (наибольший вклад в развитие этой теории внесли Г. Льюис и В. Коссель), в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т. е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными.

    Согласно спиновой теории, валентность атома определяется числом его неспаренных электронов, способных участвовать в образовании химических связей с другими атомами, поэтому валентность всегда выражается небольшими целыми числами.

    Рассмотрим электронную конфигурацию атома углерода. В свободном состоянии он имеет два неспаренных электрона и два спаренных электрона в состоянии 2s. В определенных условиях (при затрате некоторого количества энергии извне) эту пару электронов 2s 2 можно разъединить (“распарить”) путем перевода одного электрона из состояния 2s в состояние и сделать эти электроны также валентными:

    В таком состоянии атом углерода может образовывать соединения, где он будет четырехвалентен.

    Процесс распаривания электронов требует определенной затраты энергии (D E), и, казалось бы, он не выгоден. Но для учета энергетических соотношений нужно рассмотреть весь баланс образования связей. Дело в том, что при переходе одного из электронов 2s в состояние получается состояние атома, в котором он может образовать уже не две, а четыре связи. При образовании химической связи обычно выделяется энергия, поэтому появление двух новых валентностей приводит к выделению дополнительной энергии, которая превосходит энергию D E затраченную на распаривание 2s-электронов.

    Опыты доказали, что энергия, затраченная на распаривание электронов в пределах одного энергетического уровня, как правило, полностью компенсируется энергией, выделенной при образовании дополнительных связей.

    Чтобы таким же образом получить, например, четырехвалентный кислород, трехвалентный литий, двухвалентный неон, необходима очень большая затрата энергии

    D E связанная с переходом 2р ® 3s (кислород). 1s ® (литий), 2р ® 3s (неон). В этом случае затрата энергии настолько велика, что не может быть компенсирована энергией, выделяющейся при образовании химических связей. Поэтому и не существует соединений с переменной валентностью кислорода, лития или неона.

    Подтверждением этого положения могут служить достижения в химии благородных (инертных) газов. Долго считалось, что инертные газы не образуют химических соединений (отсюда и

    их название). Однако в 1962 г. химикам удалось получить несколько соединений “инертных” газов, например, XeF 2 , XeF 4 , ХеО 3 . Проявление инертными газами определенной валентности можно объяснить, только допустив, что спаренные электроны полностью заполненных подуровней могут распариваться в пределах уровня.

    Энергия связи. Существенной характеристикой химической связи является ее прочность. Для оценки прочности связей обычно пользуются понятием энергии связей.

    Энергия связи - это работа, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества.

    Чаще всего энергию связи измеряют в кДж/моль. Наиболее прочными являются ионные и ковалентные связи, энергии этих связей составляют величины от десятков до сотен кДж/моль. Металлическая связь, как правило, несколько слабее ионных и ковалентных связей, но величины энергий связи в металлах близки к значениям энергии ионных и ковалентных связей. Об этом свидетельствуют, в частности, высокие температуры кипения металлов, например 357 °С (Hg), 880 °С (Na), 3000 ° С (Fe) и т. д. Энергии водородных связей очень небольшие по сравнению с энергией межатомных связей. Так, энергия водородной связи составляет обычно величину 20-40 кДж/моль, тогда как энергия ковалентных связей может достигать несколько сотен кДж/моль.

    Ионная связь.

    Ионная связь - это электростатическое взаимодействие между ионами с зарядами противоположного знака.

    Коссель предположил, что ионная связь образуется в результате полного переноса одного или нескольких электронов от одного атома к другому. Такой тип связи возможен только между атомами, которые резко отличаются по свойствам. Например, элементы I и II групп периодической системы (типичные металлы) непосредственно соединяются с элементами VI и VII групп (типичными неметаллами). В качестве примеров веществ с ионной связью можно назвать MgS, NaCl, А 2 O 3 . Такие вещества при обычных условиях являются твердыми, имеют высокие температуры плавления и кипения, их расплавы и растворы проводят электрический ток.

    Валентность элементов в соединениях с ионными связями очень часто характеризуют степенью окисления, которая, в свою очередь, соответствует величине заряда иона элемента в данном соединении.

    Использование понятия степени окисления для атомов элементов, образующих другие виды химической связи, не всегда корректно и требует большой осторожности.

    Ковалентная связь. Известно, что неметаллы взаимодействуют друг с другом. Рассмотрим образование простейшей молекулы Н 2 .

    Представим себе, что мы имеем два отдельных изолированных атома водорода Н" и Н". При сближении этих атомов между собой силы электростатического взаимодействия - силы притяжения электрона атома Н" к ядру атома Н" и электрона атома Н" к ядру атома Н" - будут возрастать: атомы начнут притягиваться друг к другу. Однако одновременно будут возрастать и силы отталкивания между одноименно заряженными ядрами атомов и между

    электронами этих атомов. Это приведет к тому, что атомы смогут сблизиться между собой настолько, что силы притяжения будут полностью уравновешены силами отталкивания. Расчет этого расстояния (длины ковалентной связи ) показывает, что атомы сблизятся настолько, что электронные оболочки, участвующие в образовании связи, начнут перекрываться между собой. Это, в свою очередь, приведет к тому, что электрон, двигавшийся ранее в поле притяжения только одного ядра, получит возможность перемещаться и в поле притяжения другого ядра. Таким образом, в какой-то момент времени то вокруг одного, то вокруг другого атома будет возникать заполненная оболочка благородного газа (такой процесс может происходить только с электронами, обладающими противоположно направленными проекциями спина). При этом возникает общая пара электронов, одновременно принадлежащая обоим атомам.

    Область перекрытия между электронными оболочками имеет повышенную электронную плотность, которая уменьшает отталкивание между ядрами и способствует образованию ковалентной связи.

    Таким образом, связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам, называется ковалентной.

    Полярность связи. Ковалентная связь может возникать не только между одинаковыми, но и между разными атомами. Так, образование молекулы НСl из атомов водорода и хлора происходит также за счет общей пары электронов, однако эта пара в большей мере принадлежит атому хлора, нежели атому водорода, поскольку неметаллические свойства у хлора выражены гораздо сильнее, чем у водорода.

    Разновидность ковалентной связи, образованной одинаковыми атомами, называют неполярной, а образованной разными атомами - полярной.

    Полярность связи количественно оценивается дипольным моментом

    m , который является произведением длины диполя l - расстояния между двумя равными по величине и противоположными по знаку зарядами +q и -q - на абсолютную величину заряда: = lЧ q.

    Дипольный момент является величиной векторной и направлен по оси диполя от отрицательного заряда к положительному. Следует различать дипольные моменты (полярность) связи и молекулы в целом. Так, для простейших двухатомных молекул дипольный момент связи равен дипольному моменту молекулы.

    Напротив, в молекуле оксида углерода (IV) каждая из связей полярна, а молекула в целом неполярна (

    m =0), так как молекула О==С==О линейна, и дипольные моменты связей С==О компенсируют друг друга (см. рис.). Наличие дипольного момента в молекуле воды означает, что она нелинейна, т. е. связи О-Н расположены под углом, не равным 180° (см. рис.).

    Электроотрицательность. Наряду с дипольными моментами для оценки степени ионности (полярности) связи используют и другую распространенную характеристику, называемую электроотрицательностью.

    Электроотрицательность - это способность атома притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) не может быть измерена и выражена в единицах каких-либо физических величин, поэтому для количественного определения ЭО предложены несколько шкал, наибольшее признание и распространение из которых получила шкала относительных ЭО, разработанная Л. Полингом.

    По шкале Полинга ЭО фтора (наиболее электроотрицательного из всех элементов) условно принята равной

    4,0;на втором месте находится кислород, на третьем - азот и хлор. Водород и типичные неметаллы находятся в центре шкалы; значения их ЭО близки к 2. Большинство металлов имеют значения ЭО, приблизительно равные 1,7 или меньше. ЭО является безразмерной величиной.

    Шкала ЭО Полинга в общих чертах напоминает периодическую систему элементов. Эта шкала позволяет дать оценку степени ионностй (полярности) связи. Для этого используют зависимость между разностью ЭО и степенью ионности связи.

    Чем больше разность ЭО, тем больше степень ионности. Разность ЭО, равная 1,7, соответствует 50%-ному ионному характеру связей, поэтому связи с разностью ЭО больше 1,7 могут считаться ионными, связи с меньшей разностью относят к ковалентным полярным.

    Энергия ионизации. Энергия ионизации - это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.

    Энергия ионизации для элементов одного периода возрастает слева направо с возрастанием заряда ядра. В подгруппе она уменьшается сверху вниз вследствие увеличения расстояния электрона от ядра.

    Энергия ионизации связана с химическими свойствами элементов. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных газов связана с их высокими значениями энергии ионизации.

    Сродство к электрону. Атомы могут не только отдавать, но и присоединять электроны. При этом образуется соответствующий анион. Энергия, которая выделяется при присоединении к атому одного электрона, называется сродством к электрону. Обычно сродство к электрону, как и энергия ионизации, выражается в электрон-вольтах. Значения сродства к электрону известны не для всех элементов; измерять их весьма трудно. Наиболее велики они у галогенов, имеющих на внешнем уровне по 7 электронов. Это говорит об усилении неметаллических свойств элементов по мере приближения к концу периода.

    Степень окисления в ковалентных соединениях. Для полярных соединений также часто используют понятие степени окисления, условно считая, что такие соединения состоят только из ионов. Так, в галогеноводородах и воде водород имеет формально положительную валентность, равную 1+, галогены - формально отрицательную валентность 1-, кислород - отрицательную валентность 2-: H

    + F - , H + Cl - , H 2 + O 2 - .

    Понятие степени окисления было введено в предположении о полном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соединение).

    Поэтому в полярных соединениях степень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.

    Совсем формальным понятие “степень окисления” становится, когда оно используется при рассмотрении ковалентного соединения, поскольку степень окисления - это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов. Ясно, что в действительности никаких ионов в ковалентных соединениях нет.

    Различие между понятием степени окисления и валентности в ковалентных соединениях особенно наглядно можно проиллюстрировать на хлорпроизводных соединениях метана: валентность углерода везде равна четырем, а степень окисления его (считая степени окисления водорода 1+и хлора 1- во всех соединениях) в каждом соединении разная: 4 - СH 4, 2 - CH 3 Cl, 0 CH 2 Cl 2 , 2+ CHCl 3 , 4+ CCl 4 .

    Таким образом, нужно помнить, что степень окисления - условное, формальное понятие и, чаще всего не характеризует реальное валентное состояние атома в молекуле.

    Донорно-акцепторная связь. Помимо механизма образования ковалентной связи, согласно которому общая электронная пара возникает при взаимодействии двух электронов, существует также особый до-норно-акцепторный механизм. Он заключается в том, что ковалентная связь образуется в результате перехода уже существующей электронной пары донора (поставщика электронов) в общее пользование донора и акцептора. Донорно-акцепторный механизм хорошо иллюстрируется схемой образования иона аммония (звездочками обозначены электроны внешнего уровня атома азота):

    В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донорно-акцепторному механизму. Важно отметить, что связи Н-N, образованные по различным механизмам, никаких различий в свойствах не имеют, т. е. все связи равноценны, независимо от механизма их образования. Указанное явление обусловлено тем, что в момент образования связи орбитали 2s- и 2р-электронов атома азота изменяют свою форму. В итоге возникают четыре совершенно одинаковые по форме орбитали (здесь осуществляется sp 3 -гибридизация ).

    В качестве доноров обычно выступают атомы с большим количеством электронов, но имеющие небольшое число неспаренных электронов. Для элементов II периода такая возможность кроме атома азота имеется у кислорода (две неподеленные пары) и у фтора (три неподеленные пары). Например, ион водорода Н

    + в водных растворах никогда не бывает в свободном состоянии, так как из молекул воды Н 2 О и иона Н + всегда образуется ион гидро-ксония Н 3 О + Ион гидроксония присутствует во всех водных растворах, хотя для простоты в написании сохраняется символ H + .

    Донорно-акцепторный механизм образования связи помогает понять причину амфотерности гидроксида алюминия: в молекулах Аl(ОН) 3 вокруг атома алюминия имеется 6 электронов - незаполненная электронная оболочка. Для завершения этой оболочки не хватает двух электронов. И когда к гидроксиду алюминия прибавляют раствор щелочи, содержащей большое количество гидроксильных ионов, каждый из которых имеет отрицательный заряд и три неподеленные пары электронов (ОН) - , то ионы гидроксида атакуют атом алюминия и образуют ион [Аl(ОН) 4 ] - , который имеет отрицательный заряд (переданный ему гидроксид-ионом) и полностью завершенную восьмиэлектронную оболочку вокруг атома алюминия.

    Аналогично происходит образование связей и во многих других молекулах, даже в таких “простых”, как молекула НNО 3:

    Атом азота при этом отдает свою электронную пару атому кислорода, который ее принимает: в результате как вокруг атома кислорода, так и вокруг азота достигается полностью завершенная восьмиэлектронная оболочка, но поскольку атом азота отдал свою пару и поэтому владеет ею совместно с другим атомом, он приобрел заряд “+”, а атом кислорода - заряд “-”. Cтепень окисления азота в HNO 3 равна 5+, тогда как валентность равна 4.

    Пространственное строение молекул. Представления о природе ковалентных связей с учетом типа орбиталей, участвующих в образовании химической связи, позволяют делать некоторые суждения о форме молекул.

    Если химическая связь образуется с помощью электронов s-орбиталей, как, например, в молекуле Н 2 , то в силу сферической формы s-орбиталей не существует никакого преимущественного направления в пространстве для наиболее выгодного образования связей. Электронная плотность в случае р-орбиталей распределена в пространстве неравномерно, поэтому появляется некоторое выделенное направление, вдоль которого наиболее вероятно образование ковалентной связи.

    Рассмотрим примеры, которые позволяют понять общие закономерности в направленности химических связей. Обсудим образование связей в молекуле воды H 2 O. Молекула H 2 O образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных электрона, которые занимают две орбитали, расположенные под углом 90° друг к другу. Атомы водорода имеют неспаренные 1s-электроны. Ясно, что углы между двумя связями О-Н, образованными р-электронами атома кислорода с s-электронами атомов водорода, должны быть прямыми или близкими к нему (см. рис.).

    Аналогично, прямыми должны быть углы между связями в молекулах Н

    2 О, H 2 S, F 2 О. Cl 2 O, РН 3 , РСl 3 и т. д. Действительные значения углов между связями заметно отличаются от теоретических.

    Увеличение валентных углов (> 90°) вполне объяснимо взаимным отталкиванием не связанных друг с другом атомов, которое мы не учитывали при предсказании углов между связями. Так, взаимное отталкивание атомов водорода в молекуле H

    2 S слабее, чем в молекуле Н 2 О (так как радиус атома серы больше радиуса атома кислорода), поэтому и валентные углы Н-S-Н ближе к 90°, чем углы Н-О-Н.

    Таким образом, двухвалентный атом неметалла с двумя валентными р-орбиталями образует изогнутую (угловую, с углом, близким к 90°) молекулу, а трехвалентный атом с тремя валентными р-орбиталями образует молекулу, имеющую форму пирамиды.

    Гибридизация орбиталей. Рассмотрим образование молекулы метана СН

    4 . Атом углерода в возбужденном состоянии обладает четырьмя неспаренными электронами: одним s-электроном и тремя р-электронами - ls 2 2s l 2p 3 .

    Рассуждая как в случае H

    2 O, можно было бы предполагать, что атом углерода будет образовывать три связи С-Н, направленные под прямым углом друг к другу (р-электроны), и одну связь, образованную s-электроном, направление которой было бы произвольным, поскольку s-орбиталь имеет сферическую симметрию.

    Следовательно, можно было ожидать, что три связи С-Н в СН

    4 являются направленными p-связями и совершенно одинаковы, а четвертая связь есть ненаправленная s-s-связь и отличается от первых трех.

    Однако экспериментальные данные показали, что все четыре связи С-Н в молекуле метана СН

    4 одинаковы и направлены к вершинам тетраэдра (угол между ними составляет 109,5°).

    Ввиду относительной близости значений энергии 2s- и 2p-электронов эти электроны могут взаимодействовать между собой в ходе образования химической связи с электронами другого атома, давая четыре новых равноценных гибридных электронных облака.

    3 -гибридные орбитали атома углерода расположены под углом 109,5° друг к другу, они направлены к вершинам тетраэдра, в центре которого находится атом углерода. Гибридная орбиталь сильно вытянута в одну сторону от ядра (см. рис.).

    Это обусловливает более сильное перекрывание таких орбиталей с орбиталями электронов других атомов по сравнению с перекрыванием s- и р-орбиталей и приводит к образованию более прочных связей.

    Таким образом, при образовании молекулы метана различные орбитали валентных электронов атома углерода - одна s-орбиталь и три р-орбитали - превращаются в четыре одинаковые “гибридные” sр

    3 -орбитали (sp 3 -гибридизация). Этим и объясняется равноценность четырех связей атома углерода в молекуле.

    Гибридизация оказывается характерной не только для соединений атома углерода. Гибридизация орбиталей может происходить в том случае, когда в образовании связей одновременно участвуют электроны, которые принадлежат к различным типам орбиталей.

    Рассмотрим примеры различных видов гибридизации s

    - и р-орбиталей. Гибридизация одной s- и одной р-орбиталей (sp-гибридизация) происходит при образовании галогенидов бериллия, например BeF 2 , цинка, ртути, молекулы ацетилена и др. Атомы этих элементов в основном состоянии имеют на внешнем слое два спаренных s-электрона. В результате возбуждения один из электронов s-орбитали переходит на близкую по энергии р-орбиталь, т. е. появляются два неспаренных электрона, один из которых s-электрон, а другой р-электрон. При возникновении химической связи эти две различные орбитали превращаются в две одинаковые гибридные орбитали (тип гибридизации - sp), направленные под углом 180° друг к другу, т. е. эти две связи имеют противоположное направление (см. рис.).

    Экспериментальное определение структуры молекул BeX

    2 , ZnX 2 , HgX 2 , C 2 H 2 и т. д. (X - галоген) показало, что эти молекулы действительно являются линейными.

    Остановимся подробнее на структуре молекулы ацетилена С

    2 Н 2 . В молекуле ацетилена каждый атом углерода образует две гибридизированные связи, направленные под углом 180° друг к другу (см. рис.).

    Как при образовании связей

    С-С , так и при образовании связей С-Н возникает общее двухэлектронное облако, образуя s -связи. В общем случае s -связью можно назвать связь, возникающую при обобществлении электронных облаков двух атомов, если облака перекрываются по линии, соединяющей атомы.

    Но в молекуле ацетилена атомы углерода находятся в sp-гибридных состояниях, т. е. в каждом из атомов углерода содержится еще по два р-электрона, которые не принимали участие в образовании

    s -связей. Молекула ацетилена имеет плоский линейный скелет, поэтому оба р-электронных облака в каждом из атомов углерода выступают из плоскости молекулы в перпендикулярном к ней направлении. В этом случае происходит также некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании s -связей. Таким образом, в молекуле ацетилена образуются еще две ковалентные углерод-углеродные связи, называемые p -связями (см. рис.).

    Случай образования кратных связей

    между атомами углерода для молекулы ацетилена - случай образования тройной связи, которая состоит из одной s - и двух p -связей . s -Связи являются более прочными, чем p -связи.

    Еще один вид гибридизации s- и p-орбиталей осуществляется, например, в соединениях бора, алюминия или углерода (этилен бензол). Возбужденный атом бора имеет один s- и два p-электрона. В этом случае при образовании соединений бора происходит гибридизация одной s- и двух p-орбиталей (ps 2 -гибридизация), при этом образуется три одинаковые sp 2 –гибридные орбитали, расположенные в одной плоскости под углом 12 0 ° друг к другу (см. рис.).

    Эксперименты показали, что такие соединения как BF

    3 , AlCl 3, а также этилен и бензол имеют плоское строение и все три связи B ѕ F(в молекуле BF 3 ) расположены под углом 120 ° друг к другу.

    Посредством образования sp

    2 -гибридных орбиталей объясняются и структуры непредельных углеводородов.

    Водородная связь. Само название этого типа связи подчеркивает, что в ее образовании принимает участие атом водорода. Водородные связи могут образовываться в тех случаях, когда атом водорода связан с электроотрицательным атомом, который смещает на себя электронное облако, создавая тем самым положительный заряд

    d + на водороде.

    Водородная связь, как и другие рассмотренные нами типы связей, обусловлена электростатическим взаимодействием, но это взаимодействие осуществляется уже не между атомами, а между молекулами. Таким образом, водородная связь - пример межмолекулярной связи.

    В качестве примера рассмотрим образование водородной связи между двумя молекулами воды. Связи О-Н в Н 2 О имеют заметный полярный характер с избытком отрицательного заряда d - на атоме кислорода. Атом водорода, наоборот, приобретает небольшой положительный заряд d + и может взаимодействовать с неподеленными парами электронов атома кислорода соседней молекулы воды.

    Водородная связь обычно схематично изображается точками.

    Взаимодействие между молекулами воды оказывается достаточно сильным, таким, что даже в парах воды присутствуют димеры и тримеры состава (H 2 O) 2 , (Н 2 O) 3 и т. д. В растворах же могут возникать длинные цепи ассоциатов такого вида:

    поскольку атом кислорода имеет две неподеленные пары электронов.

    Таким образом, водородные связи могут образовываться, если есть полярная Х-Н связь и свободная пара электронов. Например, молекулы органических соединений, содержащие группы -ОН, -СООН, -CONH 2 , -NH 2 и др., часто ассоциированы вследствие! образования водородных связей.

    Типичные случаи ассоциации наблюдаются для спиртов и органических кислот. Например, для уксусной кислоты возникновение водородной связи может привести к объединению молекул в пары с образованием циклической димерной структуры, и молекулярная масса уксусycной кислоты, измеренная по плотности пара, оказывается удвоенной (120 вместо 60).

    Водородные связи могут возникать как между различными молекулами, так и внутри молекулы, если в этой молекуле имеются группы с донорной и акцепторной способностями. Например, именно внутримолекулярные водородные связи играют основную роль в образовании пептидных цепей, которые определяют строение белков. По-видимому, наиболее важным и, несомненно, одним из наиболее известных примеров влияниявнутримолекулярной водородной связи на структуру является дезоксирибонуклеиновая кислота (ДНК). Молекула ДНК свернута в виде двойной спирали. Две нити этой двойной спирали связаны друг с другом водородными связями.

    Металлическая связь. Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других простых или сложных веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло- и электропроводность. Эти особенности обязаны существованию в металлах особого вида связи - металлической связи.

    В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из “электронного газа”. Как следствие этого, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве. В случае металлов невозможно говорить о направленности связей, так как валентные электроны распределены по кристаллу почти равномерно. Именно этим и объясняется, например, пластичность металлов, т. е. возможность смещения ионов и атомов в любом направлении без нарушения связи.


    Лекции для студентов общетехнических направлений и специальностей лекция 3 Тема 4
    Лекции для студентов общетехнических направлений и специальностей лекция 4 Тема 5

    Лекции для студентов общетехнических направлений и специальностей модуль II. Закономерности протекания реакций
    Лекции для студентов общетехнических направлений и специальностей лекция 7 Тема Основы химической кинетики
    Лекции для студентов общетехнических направлений и специальностей лекция 8 Тема Химическое равновесие По этой теме необходимо знать и уметь следующее
    Предисловие для преподавателей
    Лекции для студентов общетехнических направлений и специальностей модуль III. Растворы и электрохимические процессы

    7. Спаренные и неспаренные электроны

    Электроны, заполняющие орбитали попарно, называются спаренными, а одиночные электроны называются неспаренными . Неспаренные электроны обеспечивают химическую связь атома с другими атомами. Наличие неспаренных электронов устанавливается экспериментально изучением магнитных свойств. Вещества с неспаренными электронами парамагнитны (втягиваются в магнитное поле благодаря взаимодействию спинов электронов, как элементарных магнитов, с внешним магнитным полем). Вещества, имеющие только спаренные электроны, диамагнитны (внешнее магнитное поле на них не действует). Неспаренные электроны находятся только на внешнем энергетическом уровне атома и их число можно определить по его электронно-графической схеме.

    Пример 4. Определите число неспаренных электронов в атоме серы.

    Решение. Атомный номер серы Z = 16, следовательно, полная электронная формула элемента: 1s 2 2s 2 2p 6 3s 2 3p 4 . Электронно-графическая схема внешних электронов такова (рис. 11).

    Рис. 11. Электронно-графическая схема валентных электронов атома серы

    Из электронно-графической схемы следует, что в атоме серы имеется два неспаренных электрона.

    8. Проскок электрона

    Все подуровни обладают повышенной устойчивостью, когда они заполнены электронами полностью (s 2 , p 6 , d 10 , f 14), а подуровни p, d и f, кроме того, когда они заполнены наполовину, т.е. p 3 , d 5 , f 7 . Состояния d 4 , f 6 и f 13 , наоборот, обладают пониженной устойчивостью. В связи с этим у некоторых элементов наблюдается так называемый проскок электрона, способствующий формированию подуровня с повышенной устойчивостью.

    Пример 5. Объясните, почему в атомах хрома происходит заполнение электронами 3d-подуровня при незаполненом до конца 4s-подуровне? Сколько неспаренных электронов в атоме хрома?

    Решение. Атомный номер хрома Z = 24, электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 . Наблюдается проскок электрона с 4s- на 3d-подуровень, что обеспечивает формирование более устойчивого состояния 3d 5 . Из электронно-графической схемы внешних электронов (рис. 12) следует, что в атоме хрома имеется шесть неспаренных электронов.

    Рис. 12. Электронно-графическая схема валентных электронов атома хрома

    9. Сокращенные электронные формулы

    Электронные формулы химических элементов можно записывать в сокращенном виде. При этом часть электронной формулы, соответствующая устойчивой электронной оболочке атома предшествующего благородного газа, заменяется символом этого элемента в квадратных скобках (эта часть атома называется остовом атома), а остальная часть формулы записывается в обычном виде. В результате электронная формула становится краткой, но ее информативность от этого не уменьшается.

    Пример 6. Напишите сокращенные электронные формулы калия и циркония.

    Решение. Атомный номер калия Z = 19, полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 , предшествующий благородный газ – аргон, сокращённая электронная формула: 4s 1 .

    Атомный номер циркония Z = 40, полная электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 2 , предшествующий благородный газ – криптон, сокращённая электронная формула: 5s 2 4d 2 .

    10. Семейства химических элементов

    В зависимости от того, какой энергетический подуровень в атоме заполняется электронами последним, элементы подразделяются на четыре семейства. В периодической системе символы элементов различных семейств выделены разным цветом.

    1. s-Элементы: в атомах этих элементов последним заполняется электронами ns-подуровень;

    2. p-Элементы: последним заполняется электронами np-подуровень;

    3. d-Элементы: последним заполняется электронами (n – 1)d-подуровень;

    4. f-Элементы: последним заполняется электронами (n – 2)f-подуровень.

    Пример 7. По электронным формулам атомов определите, к каким семействам химических элементов относятся стронций (z = 38), цирконий (z = 40), свинец (z = 82) и самарий (z = 62).

    Решение. Записываем сокращённые электронные формулы данных элементов

    Sr: 5s 2 ; Zr: 5s 2 4d 2 ; Pb: 6s 2 4f 14 5d 10 6p 2 ; Sm: 6s 2 4f 6 ,

    из которых видно, что элементы принадлежат семействам s (Sr), p (Pb), d (Zr) и f (Sm).

    11. Валентные электроны

    Химическую связь данного элемента с другими элементами в соединениях обеспечивают валентные электроны . Валентные электроны определяются по принадлежности элементов к определенному семейству. Так, у s-элементов валентными являются электроны внешнего s-подуровня, у p-элементов – внешних подуровней s и p, а у d-элементов валентные электроны находятся на внешнем s-подуровне и предвнешнем d-подуровне. Вопрос о валентных электронах f-элементов однозначно не решается.

    Пример 8. Определите число валентных электронов в атомах алюминия и ванадия.

    Решение. 1) Сокращенная электронная формула алюминия (z = 13): 3s 2 3p 1 . Алюминий принадлежит семейству p-элементов, следовательно, в его атоме три валентных электрона (3s 2 3p 1).

    2) Электронная формула ванадия (z = 23): 4s 2 3d 3 . Ванадий принадлежит семейству d-элементов, следовательно, в его атоме пять валентных электронов (4s 2 3d 3).

    12. Строение атомов и периодическая система

    12.1. Открытие периодического закона

    В основе современного учения о строении вещества, изучения всего многообразия химических веществ и синтеза новых элементов лежат периодический закон и периодическая система химических элементов.

    Периодическая система элементов– естественная систематизация и классификация химических элементов, разработанная выдающимся русским химиком Д.И. Менделеевым на основе открытого им периодического закона. Периодическая система является графическим отображением периодического закона, его наглядным выражением.

    Периодический закон был открыт Менделеевым (1869) в результате анализа и сопоставления химических и физических свойств 63-х известных в то время элементов. Его первоначальная формулировка:

    свойства элементов и образованных ими простых и сложных веществ находятся в периодической зависимости от атомной массы элементов.

    Разрабатывая периодическую систему, Менделеев уточнил или исправил валентность и атомные массы некоторых известных, но плохо изученных элементов, предсказал существование девяти еще не открытых элементов, а для трёх из них (Ga, Ge, Sc) описал ожидаемые свойства. С открытием этих элементов (1875–1886 г.г.) периодический закон получил всеобщее признание и лёг в основу всего последующего развития химии.

    На протяжении почти 50 лет после открытия периодического закона и создания периодической системы сама причина периодичности свойств элементов была неизвестна. Было неясно, почему элементы одной группы имеют одинаковую валентность и образуют соединения с кислородом и водородом одинакового состава, почему число элементов в периодах не одинаковое, почему в некоторых местах периодической системы расположение элементов не соответствует возрастанию атомной массы (Аr – К, Co – Ni, Te – I). Ответы на все эти вопросы были получены при изучении строения атомов.

    12.2. Объяснение периодического закона

    В 1914 г. были определены заряды атомных ядер (Г. Мозли) и было установлено, что свойства элементов находятся в периодической зависимости не от атомной массы элементов, а от положительного заряда ядер их атомов. Но после изменения формулировки периодического закона форма периодической системы принципиально не изменилась, так как атомные массы элементов увеличиваются в той же последовательности, что и заряды их атомов, кроме указанных выше последовательностей аргон – калий, кобальт – никель и теллур – иод.

    Причина увеличения заряда ядра при возрастании номера элемента понятна: в ядрах атомов при переходе от элемента к элементу монотонно увеличивается число протонов. Но структура электронной оболочки атомов при последовательном возрастании значений главного квантового числа периодически повторяется возобновлением сходных электронных слоёв. При этом новые электронные слои не только повторяются, но и усложняются за счет появления новых орбиталей, поэтому число электронов на внешних оболочках атомов и число элементов в периодах увеличивается.

    Первый период: идет заполнение электронами первого энергетического уровня, имеющего лишь одну орбиталь (орбиталь 1s), поэтому в периоде только два элемента: водород (1s 1) и гелий (1s 2).

    Второй период: идет заполнение второго электронного слоя (2s2p), в котором повторяется первый слой (2s) и идет его усложнение (2p) – в этом периоде 8 элементов: от лития до неона.

    Третий период: идет заполнение третьего электронного слоя (3s3p), в котором повторяется второй слой, и усложнения не происходит, так как 3d-подуровень этому слою не принадлежит; в этом периоде тоже 8 элементов: от натрия до аргона.

    Четвертый период: идет заполнение электронами четвертого слоя (4s3d4p), усложненного по сравнению с третьим появлением пяти d-орбиталей 3d-подуровня, поэтому в этом периоде 18 элементов: от калия до криптона.

    Пятый период: заполняется электронами пятый слой (5s4d5p), усложнения которого по сравнению с четвертым не происходит, поэтому в пятом периоде тоже 18 элементов: от рубидия до ксенона.

    Шестой период: идет заполнение шестого слоя (6s4f5d6p), усложненного по сравнению с пятым за счет появления семи орбиталей 4f-подуровня, поэтому в шестом периоде 32 элемента: от цезия до радона.

    Седьмой период: заполняется электронами седьмой слой (7s5f6d7p), аналогичный шестому, поэтому в данном периоде также 32 элемента: от франция до элемента с атомным номером 118, который получен, но пока ещё не имеет названия.

    Таким образом, закономерности формирования электронных оболочек атомов объясняют число элементов в периодах периодической системы. Знание этих закономерностей позволяет сформулировать физический смысл атомного номера химического элемента в периодической системе, периода и группы.

    Атомный номер элемента z – это положительный заряд ядра атома, равный числу протонов в ядре, и число электронов в электронной оболочке атома.

    Период – это горизонтальная последовательность химических элементов, атомы которых имеют равное число энергетических уровней, частично или полностью заполненных электронами .

    Номер периода равен числу энергетических уровней в атомах, номеру высшего энергетического уровня и значению главного квантового числа для высшего энергетического уровня.

    Группа – это вертикальная последовательность элементов, обладающих однотипной электронной структурой атомов, равным числом внешних электронов, одинаковой максимальной валентностью и сходными химическими свойствами.

    Номер группы равен числу внешних электронов в атомах, максимальному значению стехиометрической валентности и максимальному значению положительной степени окисления элемента в соединениях. По номеру группы можно определить и максимальное значение отрицательной степени окисления элемента: оно равно разности числа 8 и номера группы, в которой расположен данный элемент.

    12.3. Основные формы периодической системы

    Существует около 400 форм периодической системы, но наиболее распространены две: длинная (18-клеточная) и короткая (8-клеточная).

    В длинной (18-клеточной) системе (она представлена в этой аудитории и в справочнике) имеется три коротких периода и четыре длинных. В коротких периодах (первом, втором и третьем) имеются только s- и p-элементы, поэтому в них имеется 2 (первый период) или 8 элементов. В четвёртом и пятом периодах, кроме s- и р-элементов, появляются по 10 d-элементов, поэтому эти периоды содержат по 18 элементов. В шестом и седьмом периодах появляются f-элементы, поэтому периоды имеют по 32 элемента. Но f-элементы вынесены из таблицы и приведены внизу (в виде приложения) в двух строках, а их место в системе обозначено звездочками. В первой строке расположено 14 f-элементов, которые следуют за лантаном, поэтому они имеют общее название «лантаноиды», а во второй строке расположено 14 f-элементов, следующих за актинием, поэтому они имеют общее название «актиноиды». Эта форма периодической системы рекомендуется ИЮПАК для использования во всех странах.

    В короткой (8-клеточной) системе (она также имеется в этой аудитории и в справочнике) f-элементы также вынесены в приложение, а большие периоды (4-й, 5-й, 6-й и 7-й), содержащие по 18 элементов (без f-элементов), разделены в соотношении 10:8, и вторая часть размещена под первой. Таким образом, большие периоды состоят из двух рядов (строк) каждый. В этом варианте в периодической системе имеется восемь групп, и каждая из них состоит из главной и побочной подгруппы. В главных подгруппах первой и второй группы находятся s-элементы, а в остальных p-элементы. В побочных подгруппах всех групп находятся d-элементы. Главные подгруппы содержат по 7–8 элементов, а побочные – по 4 элемента, кроме восьмой группы, в которой побочная подгруппа (VIII-Б) состоит из девяти элементов – трех «триад».

    В этой системе элементы подгрупп являются полными электронными аналогами . Элементы одной группы, но разных подгрупп тоже являются аналогами (у них одинаковое число внешних электронов), но эта аналогия неполная, т.к. внешние электроны находятся на разных подуровнях. Короткая форма компактна и потому более удобна для пользования, но в ней нет того однозначного соответствия между формой и электронным строением атомов, которое присуще длинной системе.

    Пример 9. Объясните, почему хлор и марганец находятся в одной группе, но в разных подгруппах 8-клеточной периодической системы.

    Решение. Электронная формула хлора (атомный номер 17) – 3s 2 3p 5 , а марганца (атомный номер 25) – 4s 2 3d 5 . В атомах обоих элементов имеется по семь внешних (валентных) электронов, поэтому они находятся в одной и той же группе (седьмой), но в разных подгруппах, поскольку хлор –
    р-элемент, а марганец – d-элемент.

    12.4. Периодические свойства элементов

    Периодичность выражена в структуре электронной оболочки атомов, поэтому с периодическим законом хорошо согласуются свойства, зависящие от состояния электронов: атомные и ионные радиусы, энергия ионизации, сродство к электрону, электроотрицательность и валентность элементов. Но от электронной структуры атомов зависят состав и свойства простых веществ и соединений, поэтому периодичность наблюдается во многих свойствах простых веществ и соединений: температура и теплота плавления и кипения, длина и энергия химической связи, электродные потенциалы, стандартные энтальпии образования и энтропии веществ и т.д. Периодический закон охватывает более 20 свойств атомов, элементов, простых веществ и соединений.

    1) Атомные и ионные радиусы

    Согласно квантовой механике, электрон может находиться в любой точке вокруг ядра атома как вблизи него, так и на значительном удалении. Поэтому границы атомов расплывчаты, неопределенны. В то же время в квантовой механике вычисляется вероятность распределения электронов вокруг ядра и положение максимума электронной плотности для каждой орбитали.

    Орбитальный радиус атома (иона) – это расстояние от ядра до максимума электронной плотности наиболее удаленной внешней орбитали этого атома (иона) .

    Орбитальные радиусы (их значения приведены в справочнике) в периодах уменьшаются, т.к. увеличение числа электронов в атомах (ионах) не сопровождается появлением новых электронных слоев. Электронная оболочка атома или иона каждого последующего элемента в периоде по сравнению с предшествующим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

    Орбитальные радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя.

    Изменение орбитальных атомных радиусов для пяти периодов показано на рис. 13, из которого видно, что зависимость имеет характерный для периодического закона «пилообразный» вид.


    Рис. 13. Зависимость орбитального радиуса

    Но в периодах уменьшение размеров атомов и ионов происходит не монотонно: у отдельных элементов наблюдаются небольшие «всплески» и «провалы». В «провалах» находятся, как правило, элементы, у которых электронная конфигурация соответствует состоянию повышенной стабильности: например, в третьем периоде это магний (3s 2), в четвертом – марганец (4s 2 3d 5) и цинк (4s 2 3d 10) и т.д.

    Примечание. Расчеты орбитальных радиусов проводятся с середины семидесятых годов прошлого столетия благодаря развитию электронно-вычислительной техники. Ранее пользовались эффективными радиусами атомов и ионов, которые определяются из экспериментальных данных по межъядерным расстояниям в молекулах и кристаллах. При этом предполагается, что атомы представляют собой несжимаемые шары, которые соприкасаются своими поверхностями в соединениях. Эффективные радиусы, определяемые в ковалентных молекулах, называются ковалентными радиусами, в металлических кристаллах – металлическими радиусами, в соединениях с ионной связью – ионными радиусами. Эффективные радиусы отличаются от орбитальных, но их изменение в зависимости от атомного номера также является периодическим.

    2) Энергия и потенциал ионизации атомов

    Энергией ионизации (Е ион) называется энергия, затрачиваемая на отрыв электрона от атома и превращение атома в положительно заряженный ион .

    Экспериментально ионизацию атомов проводят в электрическом поле, измеряя разность потенциалов, при которой происходит ионизация. Эта разность потенциалов называется ионизационным потенциалом (J). Единицей измерения ионизационного потенциала является эВ/атом, а энергии ионизации – кДж/моль; переход от одной величины к другой осуществляется по соотношению:

    Е ион = 96,5·J

    Отрыв от атома первого электрона характеризуется первым ионизационным потенциалом (J 1), второго – вторым (J 2) и т.д. Последовательные потенциалы ионизации возрастают (табл. 1), так как каждый следующий электрон необходимо отрывать от иона с возрастающим на единицу положительным зарядом. Из табл. 1 видно, что у лития резкое увеличение ионизационного потенциала наблюдается для J 2 , у бериллия – для J 3 , у бора – для J 4 и т.д. Резкое увеличение J происходит тогда, когда заканчивается отрыв внешних электронов и следующий электрон находится на предвнешнем энергетическом уровне.

    Т а б л и ц а 1

    Потенциалы ионизации атомов (эВ/атом) элементов второго периода


    Элемент

    J 1

    J 2

    J 3

    J 4

    J 5

    J 6

    J 7

    J 8

    Литий

    5,39

    75,6

    122,4











    Бериллий

    9,32

    18,2

    158,3

    217,7









    Бор

    8,30

    25,1

    37,9

    259,3

    340,1







    Углерод

    11,26

    24,4

    47,9

    64,5

    392,0

    489,8





    Азот

    14,53

    29,6

    47,5

    77,4

    97,9

    551,9

    666,8



    Кислород

    13,60

    35,1

    54,9

    77,4

    113,9

    138,1

    739,1

    871,1

    Фтор

    17,40

    35,0

    62,7

    87,2

    114,2

    157,1

    185,1

    953,6

    Неон

    21,60

    41,1

    63,0

    97,0

    126,3

    157,9

    Ионизационный потенциал является показателем «металличности» элемента: чем он меньше, тем легче отрывается электрон от атома и тем сильнее должны быть выражены металлические свойства элемента. Для элементов, с которых начинаются периоды (литий, натрий, калий и др.), первый ионизационный потенциал равен 4–5 эВ/атом, и эти элементы являются типичными металлами. У других металлов значения J 1 больше, но не более 10 эВ/атом, а у неметаллов обычно больше 10 эВ/атом: у азота 14,53 эВ/атом, кислорода 13,60 эВ/атом и т.д.

    Первые ионизационные потенциалы в периодах увеличиваются, а в группах уменьшаются (рис. 14), что свидетельствует об увеличении неметаллических свойств в периодах и металлических в группах. Поэтому неметаллы находятся в правой верхней части, а металлы – в левой нижней части периодической системы. Граница между металлами и неметаллами «размыта», т.к. большинство элементов обладают амфотерными (двойственными) свойствами. Тем не менее, такую условную границу можно провести, она показана в длинной (18-клеточной) форме периодической системы, которая имеется здесь в аудитории и в справочнике.


    Рис. 14. Зависимость ионизационного потенциала

    от атомного номера элементов первого – пятого периодов.


    Открытия радиоактивности подтвердило сложность строения не только атомов, а и их ядер. В 1903 г. Э. Резерфорд и Ф. Содди предложили теорию радиоактивного распада, которая коренным образом изменила старые взгляды на строение атомов. В соответствии с этой теорией, радиоактивные элементы самочинно распадаются с выпусканием α- или β-частинок и образованием атомов новых элементов, химически отличных от исходных. При этом сохраняется стабильность массы как исходных атомов, так и тех, которые образовались вследствие хода процесса распада. Э. Резерфорд в 1919 г. впервые исследовало искусственное преобразование ядер. Во время бомбардировки атомов азота с α-частинками он выделил ядра атомов водорода (протоны) и атомы нуклида кислорода. Такие преобразования называют ядерными реакциями, поскольку из ядер атомов одного элемента получаются ядра атомов других элементов. Ядерные реакции записывают с помощью уравнений. Так, рассмотренную выше ядерную реакцию можно записать так:

    Определения явления радиоактивности можно дать, использовав понятие об изотопах: радиоактивностью называется преобразование нестойких ядер атомов одного химического элемента на ядра атомов другого элемента, которое сопровождается выпусканием элементарных частичек. Радиоактивность, которую проявляют изотопы элементов, которые существуют в природе, называется естественной радиоактивностью. Скорость радиоактивных преобразований разная для разных изотопов. Она характеризуется постоянной радиоактивного распада, которая показывает, сколько атомов радиоактивного нуклида распадается за 1 с. Установлено, что количество атомов радиоактивного нуклида, которое распадается за единицу времени, пропорциональная общему количеству атомов этого нуклида и зависит от величины постоянной радиоактивного распада. Например, если на протяжении некоторого периода распалась половина общего количества атомов радиоактивного нуклида, то в следующий такой самый период распадется половина остатка, то есть вдвое меньше, чем за предыдущий период, и т.д.

    Продолжительность жизни радиоактивного нуклида характеризуют периодом полураспада, то есть таким промежутком времени, на протяжении которого распадается половина начального количества этого нуклида. Например, период полураспада Радона составляет 3,85 суток, Радия - 1620 лет, Урана - 4,5 миллиарда лет. Известные такие типы радиоактивных преобразований: α-распад, β-распад, спонтанный (самочинный) деление ядер. Эти типы радиоактивных преобразований сопровождаются выпусканием α-частичек, электронов, позитронов, γ-луч. В процессе α-распада ядро атома радиоактивного элемента выпускает ядро атома Гелия, вследствие чего заряд ядра атома исходного радиоактивного элемента уменьшается на две единицы, а массовое число - на четырех. Например, преобразования атома Радия на атом Радона можно записать уравнением

    Ядерную реакцию β-распада, который сопровождается выпусканием электронов, позитронов или увлечением орбитальных электронов, также можно записать уравнением

    где е - -электрон; hν - квант γ-излучения; ν o - антинейтрино (элементарная частичка, масса покоя которой и заряд равняются нулю).

    Возможность β-распада связана с тем, что, в соответствии с современными представлениями, нейтрон может превращаться при определенных условиях на протон, выпуская при этом электрон и антинейтрино. Протон и нейтрон - два состояния одной и той самой ядерной частички - нуклона. Этот процесс можно изобразить схемой

    Нейтрон -> Протон + Электрон + Антинейтрино

    В процессе β-распада атомов радиоактивного элемента один из нейтронов, который входит в состав ядра атома, выпускает электрон и антинейтрино, превращаясь на протон. В этом случае положительный заряд ядра увеличивается на единицу. Такой вид радиоактивного распада называется электронным - распадом (β - -распадом). Итак, если ядро атома радиоактивного элемента выпускает одну α-частицу, получается ядро атома нового элемента с протонным числом на две единицы меньшим, а при выпускании β-частички - ядро нового атома с протонным числом на единицу большим, чем у исходного. В этом и состоит суть закона смещения Содди-Фаянса. Ядра атомов некоторых нестабильных изотопов могут выпускать частички, которые имеют положительный заряд +1 и массу, близкую к массе электрона. Эта частичка называется позитроном. Итак, возможное преобразование протона на нейтрон согласно с схемой:

    Протон → Нейтрон + Позитрон + Нейтрино

    Преобразования протона на нейтрон наблюдается лишь в том случае, когда нестабильность ядра вызванная избыточным содержимым в нем протонов. Тогда один из протонов превращается в нейтрон, а позитрон и нейтрино, которые возникают при этом, вылетают за границы ядра; заряд ядра уменьшается на единицу. Такой тип радиоактивного распада называется позитронным -распадом (β+-распадом). Итак, вследствие β-розпаду ядра атома радиоактивного элемента получается атома элемента, смещенного на одно место вправо (β-розпад) или влево (β+-распад) от исходного радиоактивного элемента. Уменьшения заряда ядра радиоактивного атома на единицу может быть вызвано не только β+-распадом, а и электронным увлечением, вследствие чего один из электронов ближайшего к ядру электронного шара захватывается ядром. Этот электрон с одним из протонов ядра образовывает нейтрон: е - + р → n

    Теорию строения ядра атома разработали в 30-х годах XX ст. украинские ученые Д.Д. Иваненко и Е.М. Гапон, а также немецкий ученый В. Гейзенберг. В соответствии с этой теорией, ядра атомов состоят из положительно заряженных протонов и электронейтральных нейтронов. Относительные массы этих элементарных частичек почти одинаковые (масса протона 1,00728, масса нейтрона - 1,00866). Протоны и нейтроны (нуклоны) содержатся в ядре очень крепкими ядерными силами. Ядерные силы действуют только на очень маленьких расстояниях - порядка 10 -15 м.

    Энергия, которая выделяется во время образования ядра из протонов и нейтронов, называется энергией связи ядра и характеризует ее стабильность.