Что такое фотонный кристалл. Методы изготовления фотонных кристаллов




Илья Полищук, доктор физико-математических наук, профессор МФТИ, ведущий научный сотрудник НИЦ "Курчатовский институт"


Применение микроэлектроники в системах обработки информации и связи коренным образом изменило мир. Не вызывает сомнений, что последствия бума научно-исследовательских работ в области физики фотонных кристаллов и устройств на их основе будут сравнимы по значимости с созданием интегральной микроэлектроники более полувека назад. Материалы нового типа позволят создавать оптические микросхемы по "образу и подобию" элементов полупроводниковой электроники, а принципиально новые способы передачи, хранения и обработки информации, отрабатываемые сегодня на фотонных кристаллах, в свою очередь, найдут применение в полупроводниковой электронике будущего. Неудивительно, что эта область исследований — одна из самых горячих в крупнейших мировых научных центрах, высокотехнологичных компаниях и на предприятиях военно-промышленного комплекса. Россия, конечно же, не является исключением. Более того, фотонные кристаллы — предмет эффективного международного сотрудничества. В качестве примера сошлемся на более чем десятилетнее сотрудничество российского ООО "Кинтех лаб" с известной американской фирмой General Electric.

История фотонных кристаллов


Исторически сложилось так, что теория рассеяния фотонов на трехмерных решетках начала интенсивно развиваться с области длин волн?~0,01-1 нм, лежащих в рентгеновском диапазоне, где узлами фотонного кристалла являются сами атомы. В 1986 году Эли Яблонович из университета Калифорнии в Лос-Анджелесе высказал идею создания трехмерной диэлектрической структуры, подобной обычным кристаллам, в которой не могли бы распространяться электромагнитные волны определенной полосы спектра. Такие структуры получили название фотонных структур с запрещенной зоной (photonic bandgap) или фотонных кристаллов. Через 5 лет такой фотонный кристалл был изготовлен путем сверления миллиметровых отверстий в материале с высоким показателем преломления. Такой искусственный кристалл, получивший впоследствии название яблоновит, не пропускал излучение миллиметрового диапазона и фактически реализовывал фотонную структуру с запрещенной зоной (кстати, к тому же классу физических объектов можно отнести и фазированные антенные решетки).

Фотонные структуры, в которых запрещено распространение электромагнитных (в частности, оптических) волн в некоторой полосе частот в одном, двух или трех направлениях, могут использоваться для создания оптических интегральных устройств управления этими волнами. В настоящее время идеология фотонных структур лежит в основе создания беспороговых полупроводниковых лазеров, лазеров на основе редкоземельных ионов, резонаторов с высокой добротностью, оптических волноводов, спектральных фильтров и поляризаторов. Исследование фотонных кристаллов проводится сейчас более чем в двух десятках стран, в том числе и в России, и количество публикаций в этой области, как и число симпозиумов и научных конференций и школ, растет экспоненциально.

Для понимания процессов, происходящих в фотонном кристалле, его можно сравнить с кристаллом полупроводника, а распространение фотонов с движением носителей заряда — электронов и дырок. Например, в идеальном кремнии атомы расположены в алмазоподобной кристаллической структуре, и, согласно зонной теории твердого тела, заряженные носители, распространяясь по кристаллу, взаимодействуют с периодическим потенциалом поля атомных ядер. Это является причиной образования разрешенных и запрещенных зон — квантовая механика запрещает существование электронов с энергиями, соответствующими энергетическому диапазону, называемому запрещенной зоной. Аналогично обычным кристаллам, фотонные кристаллы содержат высокосимметричную структуру элементарных ячеек. Причем, если структура обычного кристалла определяется положениями атомов в кристаллической решетке, то структура фотонного кристалла определяется периодической пространственной модуляцией диэлектрической постоянной среды (масштаб модуляции сопоставим с длиной волны взаимодействующего излучения).

Фотонные проводники, изоляторы, полупроводники и сверхпроводники


Продолжая аналогию, фотонные кристаллы можно разделить на проводники, изоляторы, полупроводники и сверхпроводники.

Фотонные проводники обладают широкими разрешенными зонами. Это прозрачные тела, в которых свет пробегает большое расстояние, практически не поглощаясь. Другой класс фотонных кристаллов — фотонные изоляторы — обладает широкими запрещенными зонами. Такому условию удовлетворяют, например широкодиапазонные многослойные диэлектрические зеркала. В отличие от обычных непрозрачных сред, в которых свет быстро затухает, превращаясь в тепло, фотонные изоляторы свет не поглощают. Что же касается фотонных полупроводников, то они обладают более узкими по сравнению с изоляторами запрещенными зонами.

Волноводы на основе фотонных кристаллов используются для изготовления фотонного текстиля (на фотографиях). Такой текстиль только появился, и даже область его применения до конца еще не осознана. Из него можно изготовить, например интерактивную одежду, а можно мягкий дисплей

Фото: emt-photoniccrystal.blogspot.com

Несмотря на то, что идея фотонных зон и фотонных кристаллов утвердилась в оптике лишь за последние несколько лет, свойства структур со слоистым изменением коэффициента преломления давно известны физикам. Одним из первых практически важных применений таких структур стало изготовление покрытий с уникальными оптическими характеристиками, применяемых для создания высокоэффективных спектральных фильтров и снижения нежелательного отражения от оптических элементов (такая оптика получила название просветленной) и диэлектрических зеркал с коэффициентом отражения, близким к 100%. В качестве другого хорошо известного примера 1D-фотонных структур можно упомянуть полупроводниковые лазеры с распределенной обратной связью, а также оптические волноводы с периодической продольной модуляцией физических параметров (профиля или коэффициента преломления).

Что касается обычных кристаллов, то природа нам дарит их весьма щедро. Фотонные же кристаллы в природе — большая редкость. Поэтому, если мы хотим использовать уникальные свойства фотонных кристаллов, мы вынуждены разработать различные методы их выращивания.

Как вырастить фотонный кристалл


Создание трехмерного фотонного кристалла в видимом интервале длин волн остается на протяжении последних десяти лет одной из первоочередных задач материаловедения, для решения которой большинство исследователей сосредоточились на двух принципиально разных подходах. В одном из них использовуется метод затравочного шаблона (template) — темплатный метод. В этом методе создаются предпосылки для самоорганизации синтезируемых наносистем. Второй метод — нанолитография.

Среди первой группы методов наибольшее распространение получили такие, которые в качестве темплатов для создания твердых тел с периодической системой пор используют монодисперсные коллоидные сферы. Эти методы позволяют получить фотонные кристаллы на основе металлов, неметаллов, оксидов, полупроводников, полимеров, и т.д. На первом этапе, близкие по размерам коллоидные сферы равномерно "упаковывают" в виде трехмерных (иногда двухмерных) каркасов, которые в дальнейшем выступают в качестве темплатов аналогом природного опала. На втором этапе, пустоты в темплатной структуре пропитывают жидкостью, которая впоследствии при различных физико-химических воздействиях превращается в твердый каркас. Другими методами заполнения веществом пустот темплата являются либо электрохимические методы, либо метод CVD (Chemical Vapor Deposition — осаждение из газовой фазы).

На последнем этапе, темплат (коллоидные сферы) удаляют, используя в зависимости от его природы процессы растворения или термического разложения. Получающиеся структуры часто называют обратными репликами исходных коллоидных кристаллов или "обратными опалами".

Для практического использования бездефектные области в фотонном кристалле не должны превышать 1000 мкм2. Поэтому проблема упорядочения кварцевых и полимерных сферических частиц является одной из важнейших при создании фотонных кристаллов.

Во второй группе методов однофотонная фотолитография и двухфотонная фотолитография позволяют создавать трехмерные фотонные кристаллы с разрешением 200нм и использует свойство некоторых материалов, таких как полимеры, которые чувствительны к одно- и двухфотонному облучению и могут изменять свои свойства под воздействием этого излучения. Литография при помощи пучка электронов является дорогим, но выскоточным методом для изготовления двумерных фотонных кристаллов. В этом методе, фоторезист, который меняет свои свойства под действием пучка электронов, облучается пучком в определенных местах для формирования пространственной маски. После облучения, часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода — 10нм. Литография при помощи пучка ионов похожа по своему принципу, только вместо пучка электронов используется пучок ионов. Преимущества литографии при помощи пучка ионов над электронной литографией заключаются в том, что фоторезист более чувствителен к пучкам ионов, чем электронов и отсутствует "эффект близости" (proximity effect), который ограничивает минимально возможный размер области при литографии при помощи пучка электронов.

Упомянем также некоторые другие способы выращивания фотонных кристаллов. К ним относятся методы самопроизвольного формирования фотонных кристаллов, методы травления, голографические методы.

Фотонное будущее


Заниматься предсказаниями столь же опасно, сколь заманчиво. Однако прогнозы о будущем фотонно-кристаллических устройств весьма оптимистичны. Область использования фотонных кристаллов практически неисчерпаема. В настоящее время на мировом рынке уже появились (или появятся в ближайшее время) устройства или материалы использующие уникальные особенности фотонных кристаллов. Это лазеры с фотонными кристаллами (низкопороговые и беспороговые лазеры); волноводы, основанные на фотонных кристаллах (они более компактны и обладают меньшими потерями по сравнению с обычными волокнами); материалы с отрицательным показателем преломления, дающие возможность фокусировать свет в точку размерами меньше длины волны; мечта физиков — суперпризмы; оптические запоминающие и логические устройства; дисплеи на основе фотонных кристаллов. Фотонные кристаллы будут осуществлять и манипуляцию цветом. Уже разработан гнущийся крупноформатный дисплей на фотонных кристаллах с высоким спектральным диапазоном — от инфракрасного излучения до ультрафиолетового, в котором каждый пиксель представляет собой фотонный кристалл — массив кремневых микросфер, располагающихся в пространстве строго определенным образом. Создаются фотонные суперпроводники. Такие суперпроводники могут применяться для создания оптических датчиков температуры, которые, в свою очередь, будут работать с большими частотами и совмещаться с фотонными изоляторами и полупроводниками.

Человек еще только планирует технологическое использование фотонных кристаллов, а морская мышь (Aphrodite aculeata) уже давно применяет их на практике. Мех этого червя обладает столь ярко выраженным явлением иризации, что способен селективно отражать свет с эффективностью, близкой к 100% во всей видимой области спектра — от красной до зеленой и голубой. Такой специализированный "бортовой" оптический компьютер помогает выживать этому червю на глубине до 500 м. Можно с достоверностью утверждать, что человеческий интеллект пойдет значительно дальше в использовании уникальных свойств фотонных кристаллов.

Фотонные кристаллы (ФК) представляют собой структуры, характеризующиеся периодическим изменением диэлектрической проницаемости в пространстве. Оптические свойства ФК сильно отличаются от оптических свойств сплошных сред. Распространение излучения внутри фотонного кристалла благодаря периодичности среды становится похожим на движение электрона внутри обычного кристалла под действием периодического потенциала. В результате электромагнитные волны в фотонных кристаллах имеют зонный спектр и координатную зависимость, аналогичную блоховским волнам электронов в обычных кристаллах. При определенных условиях в зонной структуре ФК образуются щели, аналогично запрещенным электронным зонам в естественных кристаллах. В зависимости от конкретных свойств (материала элементов, их размера и периода решетки) в спектре ФК могут образовываться как полностью запрещенные по частоте зоны, для которых распространение излучения невозможно независимо от его поляризации и направления, так и частично запрещенные (стоп–зоны), в которых распространение возможно лишь в выделенных направлениях.

Фотонные кристаллы интересны как с фундаментальной точки зрения, так и для многочисленных приложений. На основе фотонных кристаллов создаются и разрабатываются оптические фильтры, волноводы (в частности, в волоконно-оптических линиях связи), устройства, позволяющие осуществлять управление тепловым излучением, на основе фотонных кристаллов были предложены конструкции лазеров с пониженным порогом накачки.

Помимо изменения спектров отражения, прохождения и поглощения металло-диэлектрические фотонные кристаллы обладают специфической плотностью фотонных состояний. Измененная плотность состояний может существенным образом влиять на время жизни возбужденного состояния атома или молекулы, помещенных внутрь фотонного кристалла, и, следовательно, менять характер люминесценции. Например, если частота перехода в молекуле-индикаторе, находящейся в фотонном кристалле, попадет в запрещенную зону, то люминесценция на этой частоте будет подавлена.

ФК делятся на три типа: одномерные, двумерные и трехмерные.

Одно-, двух- и трехмерные фотонные кристаллы. Разные цвета соответствуют материалам с разными значениями диэлектрической проницаемости.

Одномерными являются ФК с чередующимися слоями, сделанными из разных материалов.


Электронный снимок одномерного ФК, используемого в лазере как брэгговское многослойное зеркало.

Двумерные ФК могут иметь более разнообразные геометрии. К ним, например, можно отнести массивы бесконечных по длине цилиндров (их поперечный размер много меньше продольного) или периодические системы цилиндрических отверстий.


Электронные снимки, двумерного прямого и обратного ФК с треугольной решеткой.

Структуры трехмерных ФК весьма разнообразны. Наиболее распространенными в этой категории являются искусственные опалы - упорядоченные системы сферических рассеивателей. Различают два основных типа опалов: прямые и обратные (inverse) опалы. Переход от прямого опала к обратному опалу осуществляется заменой всех сферических элементов полостями (как правило, воздушными), в то время как пространство между этими полостями заполняется каким–либо материалом.

Ниже представлена поверхность ФК, представляющего собой прямой опал с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.


Внутренняя поверхность ФК с кубической решеткой на основе самоорганизованных сферических микрочастиц полистирола.

Следующая структура представляет собой инверсный опал, синтезированный в результате многостадийного химического процесса: самосборки полимерных сферических частиц, пропитки пустот полученного материала веществом и удалением полимерной матрицы путем химического травления.


Поверхность кварцевого инверсного опала. Фотография получена с помощью сканирующей электронной микроскопии.

Еще одним типом трехмерных ФК являются структуры типа «поленница» (logpiles), образованные скрещенными, как правило, под прямым углом прямоугольными параллелепипедами.


Электронная фотография ФК из металлических параллелепипедов.

Методы производства

Применение ФК на практике существенно ограничивается отсутствием универсальных и простых методов их изготовления. В наше время реализовано несколько подходов к созданию ФК. Ниже описаны два основных подхода.

Первым из них является так называемый метод самоорганизации или самосборки. При самосборке фотонного кристалла используются коллоидные частицы (самыми распространенными являются монодисперсные кремниевые или полистироловые частицы), которые находятся в жидкости и по мере испарения жидкости осаждаются в объеме. По мере их “осаждения” друг на друга, они формируют трехмерный ФК и упорядочиваются, в зависимости от условий, в кубическую гранецентрированную или гексагональную кристаллическую решетку. Этот метод достаточно медленный, формирование ФК может занять несколько недель. Также к его недостаткам можно отнести плохо контролируемый процент появления дефектов в процессе осаждения.

Одной из разновидностей метода самосборки является так называемый сотовый метод. Этот метод предусматривает фильтрование жидкости, в которой находятся частицы, через малые поры, и позволяет формировать ФК со скоростью, определяемой скоростью течения жидкости через эти поры. По сравнению с обычным методом осаждения указанный способ является гораздо более быстрым, однако и процент появления дефектов при его использовании является более высоким.

К достоинствам описанных методов можно отнести тот факт, что они позволяют формировать образцы ФК больших размеров (площадью до нескольких квадратных сантиметров).

Вторым наиболее популярным методом изготовления ФК является метод травления. Различные методы травления, как правило, применяются для изготовления двумерных ФК. Эти методы основаны на применении маски из фоторезиста (которая задает, например, массив полусфер), сформированной на поверхности диэлектрика или металла и задающей геометрию области травления. Эта маска может быть получена с помощью стандартного метода фотолитографии, за которым непосредственно следует химическое травление поверхности образца с фоторезистом. При этом, соответственно, в областях нахождения фоторезиста, происходит травление поверхности фоторезиста, а в областях без фоторезиста - травление диэлектрика или металла. Процесс продолжается до тех пор, пока не будет достигнута нужная глубина травления, после чего фоторезист смывается.

Недостатком указанного метода является использование процесса фотолитографии, наилучшее пространственное разрешение которой определяется критерием Рэлея. Поэтому этот метод подходит для создания ФК с запрещенной зоной, лежащей, как правило, в ближней инфракрасной области спектра. Чаще всего, для достижения нужного разрешения используется комбинация метода фотолитографии с литографией при помощи электронного пучка. Данный метод является дорогим, но высокоточным методом для изготовления квазидвумерных ФК. В этом методе фоторезист, который меняет свои свойства под действием пучка электронов, облучается в определенных местах для формирования пространственной маски. После облучения часть фоторезиста смывается, а оставшаяся часть используется как маска для травления в последующем технологическом цикле. Максимальное разрешение этого метода составляет порядка 10 нм.

Параллели между электродинамикой и квантовой механикой

Любое решение уравнений Максвелла , в случае линейных сред и при отсутствии свободных зарядов и источников тока может быть представлено в виде суперпозиции гармонических во времени функций с комплексными амплитудами , зависящими от частоты: , где есть либо , либо .

Поскольку поля являются вещественными, то , и можно записать в виде суперпозиции гармонических во времени функций с положительной частотой: ,

Рассмотрение гармонических функций позволяет перейти к частотной форме уравнений Максвелла, не содержащей производных по времени: ,

где временная зависимость участвующих в этих уравнениях полей представляется в виде , . Мы предполагаем, что среды изотропны, и магнитная проницаемость .

Явно выразив поле , взяв ротор от обеих частей уравнений, и подставив второй уравнение в первое, получаем:

где – скорость света в пустоте.

Иначе говоря, мы получили задачу на собственные значения:

для оператора

где зависимость определяется рассматриваемой структурой.

Собственные функции (моды) полученного оператора должны удовлетворять условию

Находится как

При этом условие соблюдается автоматически, поскольку дивергенция ротора всегда нулю.

Оператор линеен, из чего следует, что любая линейная комбинация решений задачи на собственные значения с той же самой частотой будет также решением. Можно показать, что в случае этот оператор эрмитов, т. е. для любых векторных функций

где скалярное произведение определяется как

Из эрмитовости оператора следует вещественность его собственных значений . Также можно показать, что при 0" align="absmiddle">, собственные значения неотрицательны, а следовательно, частоты - вещественны.

Скалярное произведение собственных функций, соответствующих разным частотам , всегда равно нулю. В случае равенства частот это не обязательно так, однако всегда можно работать только с ортогональными друг другу линейными комбинациями таких собственных функций. Более того, всегда можно составить базис из собственных ортогональных друг другу функций эрмитова оператора .

Если, наоборот, выразить поле через , получается обобщенная задача на собственные значения:

в которой операторы присутствуют уже в обеих сторонах уравнения (при этом после деления на оператор в левой части уравнения становится неэрмитовым). В некоторых случаях данная формулировка оказывается удобнее.

Отметим, что при замене в уравнении на собственные значения новому решению будет соответствовать частота . Этот факт называется масштабируемостью и имеет большую практическую значимость. Производство фотонных кристаллов с характерными размерами порядка микрона технически сложно. Однако в целях тестирования можно изготовить модель фотонного кристалла с периодом и размером элементов порядка сантиметра, который бы работал в сантиметровом режиме (при этом нужно использовать материалы, которые бы в сантиметровом диапазоне частот обладали примерно такой же диэлектрической проницаемостью, что и моделируемые материалы).

Проведем аналогию описанной выше теории с квантовой механикой. В квантовой механике рассматривается скалярная волновая функция , принимающая комплексные значения. В электродинамике - векторная, причем комплексная зависимость вводится лишь для удобства. Следствием этого факта, в частности, является то, что зонные структуры для фотонов в фотонном кристалле будут разными для волн с различной поляризацией в отличие от зонных структур для электронов.

Как в квантовой механике, так и в электродинамике решается задача на собственные значения эрмитового оператора. В квантовой механике эрмитовы операторы соответствуют наблюдаемым величинам.

И наконец, в квантовой механике, если оператор представим в виде суммы , решение уравнения на собственные значения можно записать как , то есть задача распадается на три одномерные. В электродинамике это невозможно, поскольку оператор «связывает» все три координаты, даже если в они разделяются. По этой причине в электродинамике аналитические решения имеются лишь у весьма ограниченного числа задач. В частности, точные аналитические решения для зонного спектра ФК находятся в основном для одномерных ФК. Именно поэтому важную роль играет численное моделирование для расчета свойств фотонных кристаллов.

Зонная структура

Фотонный кристалл характеризуется периодичностью функции :

Проивольный вектор трансляции, представимый в виде

где – примитивные вектора трансляции, а – целые числа.

По теореме Блоха, собственные функции оператора могут быть выбраны таким образом, чтобы они имели форму плоской волны, умноженной на функцию, обладающую той же периодичностью, что и ФК:

где - периодичная функция . При этом значения можно подбирать таким образом, чтобы они принадлежали первой зоне Бриллюэна.

Подставляя это выражение в сформулированную задачу на собственные значения получаем уравнение на собственные значения

Собственные функции должны быть периодичны и удовлетворять условию .

Можно показать, что каждому значению вектора соответствует бесконечный набор мод с дискретным набором частот , которые мы будем нумеровать в порядке возрастания индексом . Поскольку оператор непрерывно зависит от , частота при фиксированном индексе от также зависит непрерывно. Совокупность непрерывных функций составляют зонную структуру ФК. Изучение зонной структуры ФК позволяет получить информацию о его оптических свойствах. Наличие какой-либо дополнительной симметрии в ФК позволяет ограничиться некоторой подобластью зоны Бриллюэна, называемой неприводимой. Решения для , принадлежащей этой неприводимой зоне, воспроизводят решения для всей зоны Бриллюэна.


Слева: двумерный фотонный кристалл, состоящий из цилиндров, упакованных в квадратную решетку. Справа: первая зона Бриллюэна, соответствующая квадратной решетке. Голубой треугольник соответствует неприводимой зоне Бриллюэна. Г , М и Х - точки высокой симметрии для квадратной решетки.

Интервалы частот, которым не соответствуют какие-либо моды ни для какого действительного значения волнового вектора, называются запрещенными зонами. Ширина таких зон увеличивается при увеличении контраста диэлектрической проницаемости в ФК (отношение диэлектрических проницаемостей составных элементов фотонного кристалла). Если излучение с частотой, лежащей внутри запрещённой зоны, генерируется внутри такого фотонного кристалла, оно не может распространяться в нём (ему соответствует комплексное значение волнового вектора). Амплитуда такой волны будет экспоненциально затухать внутри кристалла (эванесцентная волна). На этом основано одно из свойств фотонного кристалла: возможность управления спонтанным излучением (в частности, его подавлением). Если же такое излучение падает на ФК извне, то оно полностью отражается от фотонного кристалла. На этом эффекте основано применение ФК для светоотражающих фильтров, а также резонаторов и волноводов с хорошо отражающими стенками.

Как правило, низкочастотные моды концентрируются преимущественно в слоях с большим показателем диэлектрической проницаемости, в то время как высокочастотные по большей части – в слоях с меньшей диэлектрической проницаемостью. Поэтому часто первую зону называют диэлектрической, а следующую за ней - воздушной.


Зонная структура одномерного ФК, соответствующая распространению волны перпендикулярно слоям. Во всех трех случаях каждый слой имеет толщину 0.5a , где a - период ФК. Слева: каждый слой имеет одинаковую диэлектрическую проницаемость ε = 13. По центру: диэлектрическая проницаемость чередующихся слоев имеет значения ε = 12 и ε = 13. Справа: ε = 1 и ε = 13.

В случае ФК с размерностью меньше трех не существует полных запрещенных зон для всех направлений, что является следствием наличия одного или двух направлений, вдоль которых ФК однороден. Интуитивно это можно объяснить тем, что вдоль этих направлений волна не испытывает многократного отражения, требуемого для формирования запрещенных зон.

Несмотря на это, возможно создание одномерных ФК, которые бы отражали волны, падающие на ФК под любыми углами.


Зонная структура одномерного ФК с периодом a , у которого толщины чередующихся слоев равны 0.2a и 0.8a , а их диэлектрические проницаемости - ε = 13 и ε = 1 соответственно. Левая часть рисунка соответствует направлению распространения волны перпендикулярно слоям (0, 0, k z), а правая - направлению вдоль слоев (0, k y , 0). Запрещенная зона существует только для направления перпендикулярно слоям. Отметим, что при k y > 0 снимается вырождение для двух различных поляризаций.

Ниже представлена зонная структура ФК, имеющего геометрию опала. Видно, что этот ФК обладает полной запрещенной зоной на длине волны порядка 1.5 мкм и одной стоп-зоной, с максимумом отражения на длине волны 2.5 мкм. Изменяя время травления кремниевой матрицы на одном из этапов изготовления инверсного опала и тем самым, варьируя диаметр сфер, можно добиться локализации запрещенной зоны в определенном диапазоне длин волн. Авторы отмечают, что структура с подобными характеристиками может быть использована в телекоммуникационных технологиях. Излучение на частоте запрещенной зоны может локализоваться внутри объема ФК, а при предоставлении необходимого канала распространяться фактически без потерь. Такой канал может быть сформирован, например, путем удаления элементов фотонного кристалла вдоль некоторой линии. При изгибании канала электромагнитная волна также будет менять направление движения, повторяя форму канала. Таким образом, такой ФК предполагается использовать в качестве передаточного узла между излучающим устройством и оптическим микрочипом, осуществляющим обработку сигнала.


Сравнение спектра отражения в направлении ГL, измеренного экспериментально, и зонной структуры, расчитанной методом разложения по плоским волнам, для инверсного кремниевого (Si) опала с кубической гранецентрированной решеткой (на вкладке изображена первая зона Бриллюэна). Объемная доля кремния 22%. Период решетки 1.23 мкм

В случае одномерных ФК для формирования запрещенной зоны достаточно даже самого малого контраста диэлектрической проницаемости. Казалось бы, для трехмерных диэлектрических ФК можно сделать аналогичный вывод: предположить наличие полной запрещенной зоны при сколь бы то ни было малом контрасте диэлектрической проницаемости в случае, если на границе зоны Бриллюэна вектор имеет одинаковые модули по всем направлениям (что отвечает сферической зоне Бриллюэна). Однако в природе не существует трехмерных кристаллов со сферической зоной Бриллюэна. Как правило, она имеет довольно сложную полигональную форму. Таким образом, получается, что запрещенные зоны по разным направлениям существуют при разных частотах. Только в случае, если диэлектрический контраст является достаточно большим, то стоп-зоны по разным направлениям могут перекрываться и образовывать полную запрещенную зону по всем направлениям. Наиболее близкой к сферической (и таким образом, наиболее независимой от направления блоховского вектора ) является первая зона Бриллюэна гранецентрированной кубической (ГЦК) и алмазной решеток, делая трехмерные ФК с такой структурой наиболее подходящими для формирования полной запрещенной зоны в спектре. При этом, для возникновения полных запрещенных зон в спектрах таких ФК требуется большой контраст диэлектрической проницаемости . Если обозначить относительную ширину щели как , то для достижения значений 5\%" align="absmiddle"> необходим контраст для алмазной и для ГЦК решеток, соответственно. Для использования запрещенных зон в спектрах ФК в различных приложениях необходимо иметь возможность сделать запрещенную зону достаточно широкой, имея ввиду, что все ФК, полученные в экспериментах, неидеальны, а дефекты в структуре могут существенно уменьшить ширину запрещенной зоны.


Первая зона Бриллюэна кубической гранецентрированной решетки и точки высокой симметрии.

В заключение еще раз отметим сходство оптических свойств ФК со свойствами электронов в квантовой механикой при рассмотрении зонной структуры твердого тела. Однако при этом между фотонами и электронами имеется существенное различие: электроны обладают сильным взаимодействием между собой. Поэтому «электронные» задачи, как правило, требуют учета многоэлектронных эффектов, сильно увеличивающих размерность задачи, что заставляет часто использовать недостаточно точные приближения, в то время как в ФК, состоящем из элементов с пренебрежимо малым нелинейно-оптическим откликом, данная трудность отсутствует.

Перспективным направлением современной оптики является управление излучением с помощью фотонных кристаллов. В частности, в Лаборатории Сандии исследовались ФК типа «поленницы» (log-piles) с целью достижения высокой селективности излучения металлических фотонных кристаллов в ближнем инфракрасном диапазоне, одновременно с сильным подавлением излучения в среднем ИК диапазоне (<20мкм). В этих работах было показано, что для таких ФК излучение в среднем ИК диапазоне сильно подавлено из-за наличия в спектре ФК полной фотонной щели. Однако качество полной фотонной щели падает с ростом температуры из-за увеличения поглощения в вольфраме, что приводит к низкой селективности излучения при высоких температурах.

Согласно закону Кирхгофа для излучения в тепловом равновесии, излучательная способность серого тела (или поверхности) пропорциональна его поглощательной способности. Поэтому для получения информации об излучательной способности металлических ФК можно исследовать их спектры поглощения. Для достижения высокой селективности излучающей структуры в видимом диапазоне ( нм), содержащей ФК, необходимо подобрать такие условия, при которых, поглощение в видимом диапазоне велико, а в ИК - подавлено.

В наших работах http подробно проанализировано изменение спектра поглощения фотонного кристалла с элементами из вольфрама и с геометрией опала при изменении всех его геометрических параметров: периода решетки, размера вольфрамовых элементов, количества слоев в образце ФК. Проведен также анализ влияния на спектр поглощения дефектов в ФК, возникающих при его изготовлении.

Идея фотоники наноразмерных структур и фотонных кристаллов родилась при анализе возможности создания оптической зонной структуры. Предполагалось, что в оптической зонной структуре, как и в полупроводниковой зонной структуре, должны существовать разрешенные и запрещенные состояния для фотонов с различными энергиями. Теоретически была предложена модель среды, в которой в качестве периодического потенциала решетки использовались периодические изменения диэлектрической проницаемости или показателя преломления среды. Так, были введены понятия «фотонная запрещенная зона» в «фотонном кристалле».

Фотонный кристалл представляет собой сверхрешетку, в которой искусственно создано поле, и период его на порядки превышает период основной решетки. Фотонный кристалл - это полупрозрачный диэлектрик с определенной периодической структурой и уникальными оптическими свойствами.

Периодическая структура формируется из мельчайших отверстий, которые периодически меняют диэлектрическую константу г. Диаметр этих отверстий такой, что через них проходят световые волны строго определенной длины. Все остальные волны поглощаются или отражаются.

Образуются фотонные зоны, в которых фазовая скорость распространения света зависит от е. В кристалле свет распространяется когерентно и появляются запрещенные частоты, зависящие от направления распространения. Брэгговская дифракция для фотонных кристаллов имеет место в оптическом диапазоне длин волн.

Такие кристаллы получили название материалов с фотонной запрещенной зоной (МФЗЗ). С точки зрения квантовой электроники, в таких активных средах не выполняется закон Эйнштейна для индуцированного излучения. В соответствии с этим законом скорости индуцированного излучения и поглощения равны и сумма возбужденных N 2 и невозбужден-

ных атомов JV, составляет А, + N., = N. Тогда или 50%.

В фотонных кристаллах возможна 100%-ная инверсия населенности уровней. Это позволяет уменьшить мощность накачки, снизить ненужный натрев кристалла.

Если на кристалл воздействовать звуковыми волнами, то длина световой волны и направление движения световой волны, характерное для кристалла, может меняться. Отличительным свойством фотонных кристаллов является пропорциональность коэффициента отражения R света в длинноволновой части спектра его квадрату частоты со 2 , а не как для релеевского рассеяния R ~ со 4 . Коротковолновая компонента оптического спектра описывается законами геометрической оптики.

При промышленном создании фотонных кристаллов необходимо найти технологию создания трехмерных сверхрешеток. Это весьма непростая задача, поскольку стандартные приемы реплицирования с использованием методов литографии неприемлемы для создания ЗО-наноструктур.

Внимание исследователей привлек благородный опал (рис. 2.23). Это минерал Si() 2 ? п 1,0 подкласса гидроксидов. В естественных опалах пустоты глобул заполнены кремнеземом и молекулярной водой. Опалы с точки зрения наноэлектроники представляют собой плотноупакованные (преимущественно по кубическому закону) наносферы (глобулы) кремнезема. Как правило, диаметр наносфер лежит в пределах 200-600 нм. Упаковка глобул кремнезема образует трехмерную решетку. Такие сверхрешетки содержат структурные пустоты размерами 140-400 им, которые могут быть заполнены полупроводниковыми, оптически активными, магнитными материалами. В опаловидной структуре возможно создать трехмерную решетку с наномасштабной структурой. Оптическая опаловая матричная структура может служить ЗЕ)-фотонным кристаллом.

Разработана технология окисленного макропористого кремния. На основе этого технологического процесса созданы трехмерные структуры в виде штырей из диоксида кремния (рис. 2.24).

В этих структурах обнаружили фотонные запрещенные зоны. Параметры запрещенных зон можно изменять на этапе литографических процессов либо путем заполнения штыревой структуры другими материалами.

На основе фотонных кристаллов разработаны различные конструкции лазеров. Другой класс оптических элементов на основе фотонных кристаллов составляют фотонно-кристаллические волокна (ФКВ). В них имеется

Рис. 2.23. Структура синтетического опала (а) и природные опалы (б)"

" Источник: Гудилин Е. А. [и др.]. Богатство Наномира. Фоторепортаж из глубин вещества; под ред. Ю. Д. Третьякова. М.: БИНОМ. Лаборатория знаний, 2010.

Рис. 2.24.

запрещенная зона в заданном диапазоне длин волн. В отличие от обычных волоконных световодов в волокнах с фотонной запрещенной зоной есть возможность сдвигать длину волны нулевой дисперсии в видимую область спектра. При этом обеспечиваются условия для солитонных режимов распространения видимого света.

Изменением размеров воздушных трубок и соответственно размера сердцевины можно увеличить концентрацию мощности светового излучения, нелинейные свойства волокон. Меняя геометрию волокон и оболочки, можно получить оптимальное сочетание сильной нелинейности и малой дисперсии в нужном диапазоне длин волн.

На рис. 2.25 представлены ФКВ. Они делятся на два типа. К первому типу отнесем ФКВ со сплошной световедущей жилой. Конструктивно такое волокно выполнено в виде сердцевины из кварцевого стекла в оболочке из фотонного кристалла. Волновые свойства таких волокон обеспечиваются как эффектом полного внутреннего отражения, так и зонными свойствами фотонного кристалла. Поэтому в таких волокнах в широком спектральном диапазоне распространяются моды низшего порядка. Моды высокого порядка сдвигаются в оболочку и там затухают. В этом случае волноведущие свойства кристалла для мод нулевого порядка определяются эффектом полного внутреннего отражения. Зонная структура фотонного кристалла проявляется только косвенным образом.

Второй тин ФКВ имеет полую световедущую жилу. Свет может распространяться как по сердцевине волокна, так и по оболочке. В сердцевине во-

Рис. 2.25.

а - сечение со сплошной световедущей жилой;

6 - сечение с полой световедущей жилой локна показатель преломления меньше, чем средний показатель преломления оболочки. Это позволяет значительно увеличить мощность транспортируемого излучения. В настоящее время созданы волокна, имеющие потери 0,58 дБ/км на длине волны X = 1,55 мкм, что близко к значению потерь в стандартном одномодовом волокне (0,2 дБ/км).

Среди других преимуществ фотонно-кристаллических волокон отметим следующие:

  • одномодовый режим для всех расчетных длин волн;
  • широкий диапазон изменения пятна основной моды;
  • постоянное и высокое значение коэффициента дисперсии для длин волн 1,3-1,5 мкм и нулевая дисперсия для длин волн в видимом спектре;
  • управляемые значения поляризации, дисперсии групповой скорости, спектр пропускания.

Волокна с фотонно-кристаллической оболочкой находят широкое применение для решения проблем оптики, лазерной физики и особенно в системах телекоммуникаций. В последнее время интерес вызывают различные резонансы, возникающие в фотонных кристаллах. Поляритонные эффекты в фотонных кристаллах имеют место при взаимодействии электронных и фотонных резонансов. При создании метало-диэлектрических наноструктур с периодом много меньше оптической длины волны можно реализовать ситуацию, при которой будут одновременно выполняться условия г

Весьма значимым продуктом развития фотоники являются телекоммуникационные волоконно-оптические системы. В основе их функционирования лежат процессы электрооитического преобразования информационного сигнала, передачи модулированного оптического сигнала па оптоволоконному световоду и обратном оптико-электронном преобразовании.

В последнее десятилетие развитие микроэлектроники затормозилось, поскольку уже практически достигнуты ограничения по быстродействию стандартных полупроводниковых устройств. Все большее число исследований посвящается разработке альтернативных полупроводниковой электронике областей - это спинтроника, микроэлектроника со сверхпроводящими элементами, фотоника и некоторые другие.

Новый принцип передачи и обработки информации с помощью светового, а не электрического сигнала может ускорить наступление нового этапа информационного века.

От простых кристаллов к фотонным

Основой электронных устройств будущего могут стать фотонные кристаллы - это синтетические упорядоченные материалы, в которых диэлектрическая проницаемость периодически меняется внутри структуры. В кристаллической решетке традиционного полупроводника регулярность, периодичность расположения атомов приводит к образованию так называемой зонной энергетической структуры - с разрешенными и запрещенными зонами. Электрон, энергия которого попадает в разрешенную зону, может передвигаться по кристаллу, а электрон с энергией в запрещенной зоне оказывается «запертым».

По аналогии с обычным кристаллом возникла идея кристалла фотонного. В нем периодичность диэлектрической проницаемости обуславливает возникновение фотонных зон, в частности, запрещенной, в пределах которой распространение света с определенной длиной волны подавлено. То есть, будучи прозрачными для широкого спектра электромагнитного излучения, фотонные кристаллы не пропускают свет с выделенной длиной волны (равной удвоенному периоду структуры по длине оптического пути).

Фотонные кристаллы могут иметь различную размерность. Одномерные (1D) кристаллы представляют собой многослойную структуру из чередующихся слоев с разными показателями преломления. Двумерные фотонные кристаллы (2D) можно представить в виде периодической структуры из стержней с разной диэлектрической проницаемостью. Первые синтетические прообразы фотонных кристаллов были трехмерными и созданы еще в начале 1990-х годов сотрудниками исследовательского центра Bell Labs (США). Для получения периодической решетки в диэлектрическом материале американские ученые высверливали цилиндрические отверстия таким образом, чтобы получить трехмерную сеть пустот. Для того, чтобы материал стал фотонным кристаллом, его диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех трех измерениях.

Природными аналогами фотонных кристаллов являются перламутровые покрытия раковин (1D), усики морской мыши, многощетинкового червя (2D), крылья африканской бабочки парусника и полудрагоценные камни, например, опал (3D).

Но и сегодня, даже с помощью самых современных и дорогостоящих методов электронной литографии и анизотропного ионного травления, с трудом удается изготовить бездефектные трехмерные фотонные кристаллы с толщиной более 10 структурных ячеек.

Фотонные кристаллы должны найти широкое применение в фотонных интегральных технологиях, которые в перспективе заменят электрические интегральные схемы в компьютерах. При передаче информации с использованием фотонов вместо электронов резко сократится энергопотребление, увеличатся тактовые частоты и скорость передачи информации.

Фотонный кристалл из оксида титана

Оксид титана TiO 2 обладает набором уникальных характеристик, таких как высокий показатель преломления, химическая стабильность и низкая токсичность, что делает его наиболее перспективным материалом для создания одномерных фотонных кристаллов. Если рассматривать фотонные кристаллы для солнечных батарей, то здесь оксид титана выигрывает из-за своих полупроводниковых свойств. Ранее было продемонстрировано увеличение КПД солнечных элементов при использовании слоя полупроводника с периодической структурой фотонного кристалла, в том числе фотонных кристаллов из оксида титана.

Но пока применение фотонных кристаллов на основе диоксида титана ограничивается отсутствием воспроизводимой и недорогой технологии их создания.

Сотрудники химического факультета и факультета наук о материалах МГУ - Нина Саполетова, Сергей Кушнир и Кирилл Напольский - усовершенствовали синтез одномерных фотонных кристаллов на основе пористых пленок оксида титана.

«Анодирование (электрохимическое окисление) вентильных металлов, в том числе алюминия и титана, является эффективным методом получения пористых оксидных пленок с каналами нанометрового размера», - пояснил руководитель группы электрохимического наноструктурирования, кандидат химических наук Кирилл Напольский.

Анодирование обычно проводят в двухэлектродной электрохимической ячейке. В раствор электролита опускают две металлические пластины - катод и анод, и подают электрическое напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла. Если периодически менять прикладываемое к ячейке напряжение, то на аноде формируется пористая пленка с заданной по толщине пористостью.

Эффективный показатель преломления будет модулироваться, если диаметр пор будет периодически меняться внутри структуры. Разработанные ранее методики анодирования титана не позволяли получать материалы с высокой степенью периодичности структуры. Химики из МГУ разработали новый способ анодирования металла с модуляцией напряжения в зависимости от заряда анодирования, который позволяет с высокой точностью создавать пористые анодные оксиды металлов. Возможности новой методики химики продемонстрировали на примере одномерных фотонных кристаллов из анодного оксида титана.

В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40–60 Вольт ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся внутренним диаметром (см. рисунок).

«Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры. Мы разработали новую методику, ключевым составляющим которой является in situ (непосредственно во время синтеза) измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоев с различной пористостью в формируемой оксидной пленке», - пояснил один из авторов работы, кандидат химических наук Сергей Кушнир.

Разработанная методика упростит создание новых материалов с модулированной структурой на основе анодных оксидов металлов. «Если в качестве практического использования методики рассматривать применение в солнечных батареях фотонных кристаллов из анодного оксида титана, то еще предстоит провести систематическое исследование влияния структурных параметров таких фотонных кристаллов на эффективность преобразования света в солнечных батареях», - уточнил Сергей Кушнир.

Необычным свойствам фотонных кристаллов посвящено огромное количество работ, а в последнее время и монографий. Напомним, что фотонными кристаллами называют такие искусственные среды, в которых благодаря периодическому изменению диэлектрических параметров (имеется в виду показатель преломления) свойства распространяющихся электромагнитных волн (света) становятся аналогичными свойствам электронов, распространяющихся в реальных кристаллах. Соответственно термин "фотонный кристалл" подчёркивает сходство фотонов и электронов. Квантование свойств фотонов приводит к тому, что в спектре электромагнитной волны, распространяющейся в фотонном кристалле, могут возникать запрещённые зоны, в которых плотность состояний фотонов равна нулю.

Трёхмерный фотонный кристалл с абсолютной запрещённой зоной был впервые реализован для электромагнитных волн СВЧ-диапазона. Существование абсолютной запрещённой зоны означает, что электромагнитные волны в определённой полосе частот не могут распространяться в данном кристалле в любом направлении, так как плотность состояния фотонов, энергия которых соответствует этой полосе частот, равна нулю в любой точке кристалла. Как и реальные кристаллы, фотонные по наличию и свойствам запрещённой зоны могут представлять собой проводники, полупроводники, изоляторы и сверхпроводники. Если в запрещённой зоне фотонного кристалла существуют "дефекты", то возможен "захват" фотона "дефектом", аналогично тому, как происходит захват электрона или дырки соответствующей примесью, находящейся в запрещённой зоне полупроводника.

Такие распространяющиеся волны с энергией, расположенной внутри запрещённой зоны, называются дефектными модами.

фотонный кристалл метаматериал преломление

Как уже отмечалось, необычные свойства фотонного кристалла наблюдаются, когда размеры элементарной ячейки кристалла порядка длины распространяющейся в нём волны. Понятно, что идеальные фотонные кристаллы видимого диапазона света можно изготовить лишь с помощью субмикронных технологий. Уровень современной науки и техники позволяет создавать такие трёхмерные кристаллы.

Применения фотонных кристаллов достаточно многочисленны - оптические изоляторы, оптические вентили, переключатели, мультиплексоры и т.д. Одной из чрезвычайно важных, с практической точки зрения, структур являются фотонно-кристаллические оптические волокна. Они впервые были изготовлены из набора стеклянных капилляров, собранных в плотную пачку, которая затем подвергалась обычной вытяжке. В результате получилось оптоволокно, содержащее регулярно расположенные отверстия с характерным размером около 1 мкм. В дальнейшем были получены оптические фотонно-кристаллические световоды разнообразной конфигурации и с различными свойствами (рис. 9).

В Институте радиотехники и электроники и в Научном центре волоконной оптики РАН был разработан новый метод сверления для создания фотонно-кристаллических световодов. Сначала в кварцевой толстой заготовке просверливались механические отверстия с любой матрицей, а затем заготовка подвергалась вытяжке. В результате было получено фотонно-кристаллическое волокно высокого качества. В таких световодах легко создавать дефекты разнообразной формы и размера, так что в них можно возбуждать одновременно несколько мод света, частоты которых лежат в запрещённой зоне фотонного кристалла. Дефекты, в частности, могут иметь вид пустотелого канала, так что свет будет распространяться не в кварце, а по воздуху, что может существенно снизить потери на длинных участках фотонно-кристаллических световодов. Распространение видимого и инфракрасного излучения в фотонно-кристаллических световодах сопровождается разнообразными физическими явлениями: комбинационным рассеянием, смешением гармоник, генерацией гармоник, что в конечном итоге приводит к генерации суперконтинуума.

Не менее интересны, с точки зрения исследования физических эффектов и возможных применений, одно- и двумерные фотонные кристаллы. Строго говоря, эти структуры не являются фотонными кристаллами, однако они могут считаться таковыми при распространении электромагнитных волн в определённых направлениях. Типичный одномерный фотонный кристалл - это многослойная периодическая структура, состоящая из слоев по крайней мере двух веществ с сильно различающимися показателями преломления. Если электромагнитная волна распространяется вдоль нормали, в такой структуре возникает запрещённая зона для определённых частот. Если один из слоев структуры заменить веществом с отличным от других показателем преломления или изменить толщину одного слоя, то такой слой будет дефектом, способным захватить волну, частота которой находится в запрещённой зоне.

Наличие магнитного дефектного слоя в диэлектрической немагнитной структуре приводит к многократному увеличению фарадеевского вращения волны при распространении в такой структуре и к усилению оптической прозрачности среды.

Вообще говоря, присутствие магнитных слоев в фотонных кристаллах может существенно изменить их свойства, прежде всего в СВЧ-диапазо-не. Дело в том, что в СВЧ-диапазоне магнитная проницаемость ферромагнетиков в определённой полосе частот отрицательная, что облегчает их применение при создании метаматериалов. Сопрягая такие вещества с металлическими немагнитными слоями или структурами, состоящими из отдельных проводников либо периодических структур проводников, можно изготовить структуры с отрицательными значениями магнитной и диэлектрической проницаемости. Примером могут служить созданные в Институте радиотехники и электроники РАН структуры, предназначенные для обнаружения "отрицательного" отражения и преломления магнитостатических спиновых волн. Такая структура представляет собой плёнку железо-иттриевого граната с металлическими проводниками на её поверхности. Свойства магнитостатических спиновых волн, распространяющихся в тонких ферромагнитных плёнках, сильно зависят от внешнего магнитного поля. В общем случае один из типов таких волн, является обратной волной, так что скалярное произведение волнового вектора на вектор Пойн-тинга у этого типа волн отрицательное.

Существование обратных волн в фотонных кристаллах обусловлено и периодичностью свойств самого кристалла. В частности, для волн, волновые векторы которых лежат в первой зоне Бриллю-эна, может выполняться условие распространения как для прямых волн, а для тех же волн во второй зоне Бриллюэна - как для обратных. Подобно метаматериалам, в фотонных кристаллах также могут обнаруживаться необычные свойства в распространяющихся волнах, например "отрицательное" преломление.

Однако фотонные кристаллы могут быть тем метаматериалом, для которого возможно явление "отрицательного" преломления не только в СВЧ-диапазоне, но и в оптическом диапазоне частот. Эксперименты подтверждают факт существования "отрицательного" преломления в фотонных кристаллах для волн с частотами, выше частоты первой запрещённой зоны вблизи центра зоны Бриллюэна. Это обусловлено эффектом отрицательной групповой скорости и, как следствие, отрицательного коэффициента преломления для волны. Фактически в этой области частот волны становятся обратными.