Методы получения полимеров и их превращений. Основные методы получения полимеров Способы синтеза полимеров




В настоящее время есть 4 основных метода синтеза ВМС:

1) полимеризация

2) поликонденсация

3) ступенчатая полимеризация

4) реакции превращения

Полимеризация – цепная реакция получения ВМС, в ход которой молекулы мономера последовательно присоединяются к активному центру, находящемуся на конце растущей цепи. Реакция полимеризации характерна для соединений с двойными связями, число и характер которых в молекуле мономера могут быть различными. Полимеризация олефинов и их производных в результате раскрытия двойных связей является простейшим примером. Полимеризоваться также могут мономеры, содержащие в молекуле две или более двойных связей (полиены), тройные связи (производные ацетилена).

При протекании реакции полимеризации всегда наблюдается снижение количества двойных связей в реагирующих веществах, уменьшение общего числа молекул в системе и увеличение их средней молекулярной массы.

В результате полимеризации непредельных углеводородов образуются карбоцепные полимеры.

Полимеризация не сопровождается выделением побочных продуктов и протекает без изменения элементарного состава реагирующих веществ. Процесс полимеризации состоит из трех основных стадий:

1) образование активного центра, связанное с инициированием молекул мономера, т. е. переходом их в активное состояние: А à А * .

2) рост цепи, характеризующийся ростом макромолекул и переходом активного центра на какую-либо другую частицу.

3) обрыв цепи, связанный с гибелью активного центра в результате реакции с другим активным центром или каким-либо другим веществом.

Активными центрами в реакциях полимеризации могут быть либо свободный радикал, либо ион. В зависимости от этого различают радикальную и ионную полимеризацию.

При радикальной полимеризации активными центрами являются свободные радикалы – электронейтральные частицы, имеющие один или два неспаренных электрона, благодаря чему свободные радикалы легко вступают в реакции с различными мономерами. Образование свободных радикалов может быть связано с превращением мономера в первичный радикал под влиянием внешних факторов (тепловая энергия, свет, ионизирующие излучения), а также за счет введения в систему свободных радикалов извне или веществ, легко распадающихся на свободные радикалы (инициаторов).

При ионной полимеризации активными центрами являются положительно и отрицательно заряженные частицы – ионы, образующиеся в присутствии катализаторов, в качестве которых выступают соединения металлов (алюминий, титан), легко отдающие или принимающие электроны. В зависимости от заряда образующего иона различают катионную и анионную полимеризацию. При катионной полимеризации растущая цепь имеет положительный заряд, при анионной – отрицательный. В отличие от инициаторов радикальной полимеризации, катализаторы, активирующие процесс ионной полимеризации, в ходе протекающих реакций не расходуются и не входят в состав полимера.

Поликонденсация – это реакция образования ВМС из нескольких молекул мономеров одинакового или различного строения, протекающая по механизму замещения функциональных групп. Реакции поликонденсации протекают с выделением низкомолекулярных продуктов (воды, спирта, аммиака и др.), вследствие чего элементарный состав образующего полимера отличается от элементарного состава мономеров. Непременным условием протекания реакции является содержание в мономерах не менее двух функциональных групп (-ОН, -СООН, -NH 2 и др.). Функциональность исходных веществ оказывает влияние на строение и свойства получаемых продуктов.

При поликонденсации бифункциональных соединений образуются линейные или циклические ВМС. Если в качестве мономера используются три- или тетрафункциональные мономеры, реакция их поликонденсации приводит к образованию пространственно-сшитых ВМС.

Способы проведения реакций синтеза.

1. Синтез в блоке или массе

2. При синтезе в

3. Синтез на поверхности раздела фаз (межфазный).

4. Синтез в расплаве

5. Синтез в твердой фазе.

6. Синтез в газовой фазе

Существует ряд методов синтеза за счет использования химических реагентов для реакций, вызывающих появление новых веществ. Путем химических превращений в материал можно внести различные атомы (фтор, хлор, аминные группы и др.), которые позволяют регулировать длину макромолекул, а также подвергать их сшиванию. Очень часто эти методы используются, когда получить другим способом ВМС нельзя из-за его нестабильности в какой-либо среде.

1) Реакции внутримолекулярных перегруппировок заключаются в перегруппировках атомов в цепи полимера.

2) Реакция сшивания (структурирования) – реакция образования поперечных химических связей между макромолекулой и получение систем сетчатого строения.

3) Реакция деструкции – реакция, протекающая с разрывом химической связи в главной цепи макромолекулы. Реакция приводит к снижению молекулярной массы полимера. Характеризуется понятием степень деструкции – отношение количества разорванных валентных связей в основной цепи к их общему числу.

Полимеризацией называют процесс последовательного присоединения свободных радикалов или ионов мономера к растущей цепи макромолекулы полимера (рис. 12.1). Активные центры при полимеризации образуются в результате разрыва кратных или циклических связей. Если свободные связи образуются за счет отщепления от исходных мономеров функциональных групп (активных концевых атомов или их сочетаний) и происходит выделение низкомолекулярных побочных продуктов, то процесс называют поликонденсацией (рис. 12.2).

Некоторые полимеры (полиуретаны, эпоксидные смолы) получают в результате ступенчатой полимеризации (полиприсоединения ). В этом случае молекулы мономера образуют вначале короткие молекулярные цепочки (преполимеры ), которые затем соединяются в длинные макромолекулы. Реакции образования полимеров протекают в три основные стадии:

1. Инициирование реакции (образование активного центра). Реакция полимеризации не начинается сама по себе. Необходимо затратить энергию для разрыва кратной или циклической связи, в результате чего образуются активные центры - свободные радикалы или ионы. Образование активных центров происходит под влиянием теплоты, света, радиоактивного облучения и в присутствии инициаторов - веществ, содержащих в своих молекулах неустойчивые химические связи (О - О, N - N, S - S, О - N и др.), которые разрываются гораздо легче, чем связи в молекуле мономера. Количество вводимого инициатора обычно невелико (0,1-1%).

В отличие от полимеризации поликонденсация происходит самопроизвольно при взаимодействии функциональных групп.

2. Рост цепи. При полимеризации происходит последовательное присоединение мономеров к растущей полимерной цепи по схеме [ - А - ] п + -А- -*? [ - А - ] п + v При этом макромолекула должна оставаться свободным макрорадикалом (макроионом).

При поликонденсации происходят независимые друг от друга акты объединения мономерных радикалов и образующихся из них цепочек по схеме [-А - х + [- А - у ^[-А - х + у. По такой же схеме протекает реакция полиприсоединения, однако, несмотря на сходство с поликонденсацией, эта реакция является полиме- ризационной, так как образование активных центров происходит в результате разрыва связей.

3. Обрыв цепи. Конец полимеризации связан с исчезновением свободной связи у последнего звена макромолекулы. Это происходит тремя путями: 1) в результате соединения между собой двух макрорадикалов (реакция рекомбинации) по схеме: х- [- А - + + [- А - ] - х-> х- [- А - ] + - х; 2) в результате реакции передачи цепи, когда активный центр переходит на любую другую молекулу (растворителя или примеси) которая, превращаясь в радикал, дает начало новой макромолекуле: х- [- А - ] п + RH->x- [- А - ] п - Н + + R - ; 3) при введении ингибиторов - веществ, которые при вза-

Рис. 12.1.


Рис. 12.2. Реакция поликонденсации на примере получения фенолоформальдегидной смолы имодействии со свободными радикалами образуют малоактивные частицы, не способные инициировать процесс полимеризации.

Процесс поликонденсации может прекратиться по нескольким причинам: вследствие нарушения эквивалентного соотношения функциональных групп, увеличения вязкости реакционной среды и связанного с этим уменьшения подвижности макромолекул, установившегося равновесного состояния, когда одновременно протекают и образование более длинных цепей и их распад (деструкция). Обратимость реакции является характерной чертой процесса поликонденсации. Чтобы избежать деструкции необходимо удалять образующиеся побочные продукты. Ограничить молекулярную массу образующегося полимера можно введением монофункциональных соединений, которые блокируют функциональные группы одного из мономеров и останавливают рост полимерной цепи.

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация (полиприсоединение). Это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). Большой вклад в изучении процессов полимеризации внесли отечественные ученые С.В.Лебедев, С.С.Медведев и др. и зарубежные исследователи Г.Штаудингер, Г.Марк, К.Циглер и др. При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: С=С, C=N, C=С, С=О, С=С=О,С=С=С, C=N, либо соединения с циклическими группами, способными раскрываться, например:


В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:

По числу видов участвующих мономеров различают гомополиме-ризацию (один вид мономера) и сополимеризацию (два и более видов мономеров).

Полимеризация - самопроизвольный экзотермический процесс (DG<0, DH<0), так как разрыв двойных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации.

При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи:

а) инициирование - образование активных центров - радикалов и макрорадикалов - происходит в результате теплового, фотохимиче ского, химического, радиационного или других видов воздействий. Чаще всего инициаторами полимеризации служат пероксиды, азосое-динения (имеющие функциональную группу - N = N -) и другие соединения с ослабленными связями. Первоначально образуются радикалы, например:

(С6Н5СОО)22C6H5COO*(R*)

пероксид бензоила

Затем образуются макрорадикалы, например при полимеризации хлорвинила:

R* +СН2 = СНСl ® RCH2 – СНСl*

RCH2 - СНСl* + СН2 = CHCl ® RCH2 - СНСl - СН2 - СНСl* и т.д.;

б) рост цепи происходит за счет присоединения к радикалам образующихся мономеров с получением новых радикалов;

в) передача цепи заключается в переносе активного центра на другую молекулу (мономер, полимер, молекулы растворителя):

R-(-CH2-CHCl-)n-CH2-CHCl* + CH2=CHCl ®

®R-(-CH2 -CHCl-)n -СН2 -СН2Сl + СН = СНСl*

В результате рост цепи прекращается, а молекула-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи.

В стадии обрыва цепи происходит взаимодействие радикалов с образованием валентно-насыщенных молекул:

R-{-CH2 - СНCl-)n- СН2- СНСl* + R-(-CH2- СНСl-)n- СН2- СНСl* ® R- (-СН2- СНСl-)n- CH2- CHCl – СН2- СНСl- (-СН2-СНСl)n- R

Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами.

Таким образом, регулирование длины и соответственно молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т.е. полидисперсны. Полидисперсность является отличительной особенностью полимеров.

Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров таких, как поливинилхлорид [-СН-СНСl-]n, поливинилацетат [-СН2-СH(ОСОСНз)-]n, полистирол [-СН2-СН(С6Н5)-]n, полиакрилат [-CH2-C(CH3)(COOR)-]n, полиэтилен [-СН2-СН2-]n, полидиены [-CH2-C(R)=CH-CH2-]n, и различных сополимеров.

Ионная полимеризация также происходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например H2SO4 и НСl, неорганические апротонные кислоты (SnCl4, TiCl4, A1Cl3 и др.), металлоорганические соединения А1(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции:

при катионной полимеризации и

Mn+ + M ® M+n+1

при анионной полимеризации

Mn- + M ® M-n+1

Рассмотрим в качестве примера катионную полимеризацию изо-бутилена с инициаторами АlСl3 и Н2О. Последние образуют комплекс

А1Сl3 + Н2О « Н+[АlOНСlз]-

Обозначив этот комплекс формулой H+X- процесс инициирования полимеризации можно представить в виде

H2C=C+ +H+X-®H3C-C+ X-

Возникающий комплексный катион вместе с противоионом X- образует макроион, который обеспечивает рост цепи:

СН3 СН3 СН3 СН3

Н3С - С+ Х-+Н2С = С ®Н3С ¾ С - СН2 - С+ Х-и т.д
СH3 СН3 СН3 СН3

С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия AIR3.

Метод ионной полимеризации используется в производстве поли-изобутилена [-СН2-С(СНз)2-]п, полиформальдегида [-СН2О-]n, полиамидов, например поли-e-капроамида (капрона) [-NH-(CH2)5-CO-]n, синтетических каучуков, например бутадиенового каучука [-СН2-СН=СН-СН2-]n.

Методом полимеризации получают 3/4 всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе.

Полимеризация в массе (в блоке) - это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток - необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспрегированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10-6 до 10-3 м. Недостаток метода - необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты - в жидком или твердом состоянии. Метод применятся для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (Н2О, NH3, HCl, СН2О и др.), называется поликонденсацией. Существенный вклад в изучении процессов поликонденсации внесли российские ученые В.Коршак, Г.Петров и другие, из зарубежных ученых - У.Карозерс, П.Флори, П.Морган и др. Поликонденсация бифункциональных соединений получила название линейной, например:

2NH2-(CH2)5-COOH ®

амииокапроновая кислота

®NH2-(CH2)5-CO-NH-(CH2)5-COOH + Н2О®

NH2-(CH2)5-CO-NH-(CH2)5-COOH + NH2-(CH2)5-COOH ®

® NH2-(CH2)5-CO-NH-(CH2)5-CO-NH-(CH2)5-COOH+ H2O и т.д.

Конечным продуктом будет поли-e-капроамид [-CO-NH-(CH2)5-]n. Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида:

NH2-CO-NH2 + СН2О ® NH2-CO-NH-CH2OH

NH2-CO-NH-CH2OH + СН2О ® CH2OH-NH-CO-NH-CH2OH

2 CH2OH-NH-CO-NH-CH2OH ®

® Н2О + CH2OH-NH-CO-NH-CH2-O-CH2- NH-CO-NH-CH2OH

На первом этапе синтезируется олигомер линейной структуры:

[-СН2- NH-CO-NH-CH2-O]n

На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением СН2О и возникновением сетчатой структуры:

N-СН2-N - СН2 -N - СН2 -N -CH2-N -СН2 -

N -CH2¾N -CH2 -N -CH2 -N -CH2 -N -СН2 -

Такой полимер невозможно превратит, в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Кроме рассмотренной химической связи между мономерами при поликонденсации возникают химические связи между другими группами мономеров, некоторые из них приведены в табл. 14.1.

Таблица 14.1. Химические связи между функциональными группами некоторых мономеров, возникающих при их поликонденсации

Полимеры

Примеры полимеров

Полиамиды

Полиэфиры

Полиуретаны

Полимочевины

Силиконы

¾О ¾ С¾ NH ¾

¾NH ¾ C ¾ NH ¾

¾ Si ¾ O ¾ Si ¾

Найлон, капрон

Полиэтилентерефталат, терилен

Вайрин, ликра

Полинонаметиленмочевина, уралон

Диметилсилоксановый каучук

Так как в процессе поликонденсации наряду с высокомолекулярными образуются низкомолекулярные продукты, то элементные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликонденсация протекает по ступенчатому механизму, при этом промежуточные продукты являются стабильными, т.е. поликонденсация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции (Н2О, NH3, HCl, СН2O и др.) могут взаимодействовать с промежуточными продуктами поликонденсации, вызывая их расщепление (гидролиз, аминолиз, ацидолиз и др.), например.

Общие сведения о высокомолекулярных соединениях

Тема 11. Технология высокомолекулярных соединений

Контрольные вопросы к теме Х

«Технология ОО и НХ синтеза»

1. Перечислите основные промышленные синтезы на основе синтез-газа и оксида углерода (II).

2. Какими свойствами обладает метанол?

3. За счет чего при синтезе метанола из синтез-газа достигается необходимая селективность процесса?

4. Какие технологические схемы используются в производстве мета­нола?

5. Перечислите важнейшие области использования метанола.

6. Из каких видов сырья может быть получен в промышленных масштабах этанол?

7. Объясните преимущества метода прямой гидратации этилена пе­ред методом сернокислотной гидратации в производстве синтети­ческого этанола.

8. Какие катализаторы используются при производстве этанола пря­мой гидратацией этилена в паровой фазе?

9. Что такое гидролизное производство? Почему оно является мало­отходным?

10. Из каких стадий состоит гидролизное производство этанола и чем катализируется каждая стадия?

11. Какие соединения относят к высшим синтетическим жирным кис­лотам (ВЖК) и спиртам (ВЖС)?

12. Укажите основные промышленные методы производства ВЖК и ВЖС.

13. Что общего в химизме получения ВЖК и ВЖС окислением алканов?

14. Каким образом в производстве ВЖС прерывают процесс окисления, не допуская деструкции молекулы алкана?

15. Что такое синтетические моющие средства и какова их связь с ВЖС, ВЖК?

Пластмассы, каучуки, химические волокна и полимерные композиционные материалы как основные виды полимерных материалов. Доля полимерных материалов в валовой химической продукции индустриально развитых стран. Способы осуществления реакций полимеризации в газовой фазе, в растворе, в суспензии, в эмульсии и блочная полимеризация. Преимущества и недостатки этих способов. Промышленное получение полиэтилена, полипропилена, полистирола, поливинилхлорида, а так же сополимеров на их основе. Сравнение различных технологических схем получения ПЭ (низкой и высокой плотности). Поликонденсационные процессы и их технологическое оформление. Феноло-формальдегидные и мочевино-альдегидные, наволачные и резольные смолы. Кремнийорганические полимеры. Полиуретаны. Основные свойства и области их применения. Химические волокна: искусственные на основе целлюлозы и синтетические. Основные приемы формирования волокон из растворов и расплавов. Свойства и области применения. Производство синтетических каучуков. Каучуки специального назначения. Переработка каучука в резину. Экологические аспекты производства полимерных материалов и изделий на их основе.

Вся окружающая нас живая и неживая природа построена из мо­лекул, которые в свою очередь состоят из атомов. Атомы, соединяясь между собой в различных соотношениях, образуют молекулы, которые отличаются друг от друга размерами, строением, химическим составом и свойствами.



Вещества, построенные из небольшого числа атомов, называются низкомолекулярными. Их молекулярный вес не превы­шает нескольких сотен единиц. Низкомолекулярными веществами являются соли, кислоты, щелочи, спирты и другие соединения.

В то же время многие вещества состоят из гигантских молекул, в состав которых входят тысячи, десятки и сотни тысяч атомов. Такие молекулы называют макромолекулами; их молекулярный вес достигает сотен и даже тысяч единиц. Например, молекулярный вес молекул, входящих в состав натурального каучука, составляет 136 000-340 000.

Соединения, построенные из макромолекул, называют высоко­молекулярными или полимерами.

Полимеры по происхождению подразделяют на природные и син­тетические.

К природным, т. е. естественным, полимерам относятся целлюлоза, входящая в состав древесины, хлопка и других растений; белки, входящие в состав живых организмов; натуральный каучук и др.

Синтетические полимеры получают искусственно, путем химического синтеза; они входят в состав пластических масс, синтетических каучуков, химических волокон, лаков и др.

Состав и свойства полимеров. Молекулы полимеров представляют собой длинные цепи, в которых чередуются одинаковые звенья. Если обозначить эти звенья буквой А, то молекулу полимера можно представить так:

В синтетических полимерах эти звенья являются остатками молекул исходных соединений, состоящих всего из нескольких атомов. Эти исходные соединения называются мономерами. Например, этилен СН 2 СН 2 - мономер для получения высокомолекулярного соединения, называемого полиэтиленом. При образовании полимера у молекул этилена двойная связь между, атомами углерода раскрывается, и за счет образующихся свободных валентностей углерода большое число получившихся из мономера звеньев соединяется друг с другом. Схематически это можно представить следующим образом:

На схеме показано только три звена в составе полимера, факти­чески количество их в полиэтилене от 1000 до 10 000, а молекулярный вес такого полимера колеблется от 28 000 до 280 000.

Из приведенной схемы видно, что как в мономере, так и в полимере на один атом углерода приходятся два атома водорода, т. е. элементарный со­став получаемого полимера одинаков с мономером.

С изменением числа связанных между собой молекул мономера про­исходит изменение свойств получаемых полимеров. Так, полиэтилен по мере увеличения молекулярного веса ста­новится более вязким, затем пастообразным и, наконец, твердым. Свойства полимеров зависят также от химическо­го состава мономеров, формы цепей мо­лекул и их строения (структуры поли­мера).

В макромолекуле линейной структуры элементарные звенья образуют нитевидную молекулу, т. е. каждое звено связано только с двумя соседними звеньями (рис. а ). Ните­видные (линейные) макромолекулы мо­гут быть расположены в полимере парал­лельно друг другу (рис. б ) или пе­реплетаться без химической связи от­дельных макромолекул (рис. в ). Они могут быть изогнутыми, свернутыми в клубок (рис. г, д) и т. д. Макромоле­кулы линейной структуры характерны для полиэтилена, полипропилена, цел­люлозы, полиэфиров, полиамидов и многих других высокомолекулярных соединений, широко используемых для получения волокон, пленок, пластмасс, резины. Эти полимерные материалы, как правило, прочны, эластичны, способны растворяться и плавиться при нагревании.

Макромолекулы разветвленной структуры имеют боковые ответвления от основной цепи (рис.е ). Полимеры с разветвленной структурой молекул растворяются и плавятся труднее, чем линейные.

Макромолекулы с сетчатой структурой построены следующим образом: длинные цепи молекул связаны друг с другом короткими цепями в трех измерениях, что на рисунке изобразить трудно. Обычно такую структуру полимерных молекул изображают в виде соединенных между собой линейно построенных больших мо­лекул (рис ж ). При этом всегда имеется в виду, что линейные мо­лекулы химически связаны с молекулами, расположенными над пло­скостью и за плоскостью бумаги. Такую структуру молекул назы­вают также пространственной или трехмерной. Чем больше число «мостиков» в такой макромолекуле, тем менее эластичен полимер и у него в значительной степени проявляются свойства твер­дого тела.

Структура цепей полимерных молекул может быть различной. В одних случаях образуются полимерные молекулы, у которых эле­ментарные звенья имеют различное пространственное расположение боковых групп, в других - строго регулярное пространственное расположение. Полимеры со строго регулярной структурой молекул называются изотактическими. Такого типа полимеры об­ладают высокой твердостью и теплостойкостью.

Молекулы полимеров могут состоять не из одинаковых звеньев. Они могут быть получены из разных мономеров, например А и Б. Тогда макромолекула может быть изображена так:

Такие высокомолекулярные соединения называются сополиме­рами. Они совмещают в себе характерные свойства полимеров, полученных из каждого компонента в отдельности.

Таким образом, удается придавать полимерам некоторые специ­фические свойства, например, получать каучуки с повышенной бензо-и маслостойкостью, химической стойкостью и т. д.

Представляют интерес так называемые привитые сополи­меры. Цепи их молекул построены по следующей схеме:

Такой полимер можно сравнить с плодовым деревом, к которому привит другой сорт плодового дерева. В результате такой «прививки» получают плоды, сочетающие в себе наиболее ценные качества обоих сортов. В привитом сополимере один полимер привит к «стволу» другого полимера. Полученный «гибрид» обладает свойствами исходных веществ. Таким образом, удается получать полимеры, сочетающие например, высокие электроизоляционные свойства с огнестойкостью и устойчивостью к бензину и маслам.

Макромолекулы могут быть построены из «блоков» сравнительно невысокого молекулярного веса, полученных из различных мономе­ров. Схема такого блок-сополимера имеет вид:

Блок-сополимеры также сочетают в себе свойства исходных поли­меров.

До сих пор элементарные звенья в макромолекуле обозначали ус­ловно А и Б. Видно, что в основе органи­ческих полимеров лежит углерод, атомы которого соединились между собой, образуя «скелет» молекулы, обрамленный атомами водорода. Вместо атомов водорода могут быть группы атомов, в которых наряду с атомами углерода могут присутствовать атомы других элементов.

Если скелет молекул полимеров построен из атомов углерода, их называют карбоцепными. Существуют молекулы, в скеле­те которых атомы углерода периодически чередуются с атомами других элементов, например:

Такие полимеры называют гетероцепными.

Поведение полимеров при нагревании зависит от структуры моле­кул. Линейные и разветвленные полимеры при нагревании размягча­ются, при последующем охлаждении переходят в твердое состояние. Такие полимеры называются термопластичными. Полиме­ры, молекулы которых имеют пространственную структуру, не пла­вятся при нагревании: их называют термореактивными.

Температура перехода полимера из твердого состояния в эластич­ное (или наоборот) называется температурой стеклова­ния, температура перехода в текучее состояние - температурой текучести.

Полимеры могут быть или полностью аморфными веществами - аморфные полимеры, или веществами, содержащими кри­сталлические и аморфные области, - кристаллические по­лимеры. По видам деформаций, которые возникают в полимерах под влиянием внешних условий при комнатной температуре, их под­разделяют на твердые полимеры, эластичные по­лимеры, или эластомеры, и текучие полимеры.

Таким образом, изменяя величину получаемой макромолекулы, ее молекулярный вес и форму, составляя макромолекулу из различ­ных исходных мономеров, прививая к одной макромолекуле цепочку полимера из звеньев, образованных другим мономером, можно в ши­рокой степени изменять физические и химические свойства полиме­ров, получать их с заранее обусловленными свойствами, изменять их физическое состояние, делать жидкими, твердыми, пластичными и эластичными.

Полимеры обладают малой плотностью (самые легкие пластические массы в 800 раз легче стали), высокой механической прочностью (превышает прочность дерева, стекла, керамики), высокими термо-, звуко- и электроизоляционными свойствами, высокой химической стой­костью, прекрасными оптическими свойствами, они способны поглощать и гасить вибрации, образовывать чрезвычайно тонкие пленки и волокна, они легко поддаются обработке и переработке в изделия. Ценные свойства полимеров обусловили их широкие использование в различных отраслях народного хозяйства: в машиностроении, строи­тельстве, автомобильной, авиационной, атомной, космической и дру­гих отраслях техники, для изготовления тканей, искусственной кожи, предметов домашнего обихода, в медицине и т. д.

Производство полимерных материалов у нас в стране развивается очень быстрыми темпами, превышающими темпы роста всей промыш­ленности и других отраслей химической промышленности.

Полимеры могут быть получены методами полимеризации и поликонденсации.

Полимеризация. Метод полимеризации заключается в том, что молекулы мономеров под воздействием нагревания, катализаторов, γ-лучей, света, инициаторов соединяются между собой в молекулы больших размеров. При этом образуются макромолекулы линейной, разветвленной, сетчатой структуры, молекулы сополимеров, привитых сополимеров.

Скорость полимеризации и молекулярный вес полимера зависят от температуры, давления, активности катализатора и т. д.

Существуют следующие способы полимеризации: в массе (блоч­ный способ), в эмульсиях, в растворе и так называемая суспензионная, полимеризация.

Полимеризация в массе происходит в аппарате (автоклаве),
куда подается исходный мономер с катализатором или инициатором - веществом, которое вступает в реакцию с мономером и ускоряет по­лимеризацию. В начале полимеризации реагирующую массу подог­ревают, затем подогрев прекращают, так как полимеризация сопровождается выделением тепла. Для поддержания определенной температуры в аппарате в процессе полимеризации иногда прибегают к охлаждению реагирующей массы. По окончании полимеризации из аппарата извлекают сплошную массу, полимера в виде блока. Процесс полимеризации может быть как периодическим, так и непрерывным.
При полимеризации в массе трудно обеспечить одинаковую температуру во всей реагирующей массе, поэтому получаемый полимер состоит из макромолекул, имеющих различную степень полимеризации. Этим методом получают полистирол, полимеры метакриловой кислоты, бутадиеновый каучук и др.

Эмульсионный способ полимеризации за­ключается в том, что мономер смешивается с инициатором и эмульгатором и превращается при помощи мешалок в мельчайшие капельки взвешенные в другой жидкости, чаще всего в воде. (Эмульгаторы - вещества, препятствующие слиянию капель жидкости.) Полученные эмульсии нагреваются до температуры, при которой происходит полимеризация мономера. При этом тепло, выделяемое в процессе полимеризации, отводится легко и образующийся полимер более одноро­ден, чем полученный блочным методом. Недостаток способа заключает­ся в трудности отделения эмульгатора от полимера. Этим способом получают сополимеры бутадиена, винилацетата, акрилонитрила и др.

Полимеризация в растворе осуществляется в раст­ворителе, смешивающемся с мономером и растворяющем образующий­ся полимер. Из полученного раствора полимер выделяют испарением растворителя или осаждением. Полимеризацию проводят также в раст­ворителе, растворяющем мономер, но не растворяющем полимер. В данном случае полимер выпадает в осадок, который отфильтровы­вают. По этому способу получают поливинилацетат, полибутилакрилат и др.

Суспензионный способ предусматривает измельчение (диспергирование) мономера в виде капель в плохорастворяющей среде, обычно в воде. Полимеризация протекает в каждой капле моно­мера. Образующийся полимер в виде твердых частиц, не растворяю­щихся в воде, осаждается и отделяется от жидкости фильтрованием.

Поликонденсация. Метод заключается в том, что соединение между собой молекул мономеров происходит при реакции между ними, иду­щей с выделением побочных продуктов. Например, обозначим молекулу одного из реагирующих веществ через а-А-а, а вторую б-Б-б. Схема реакции между ними может быть представ­лена следующим образом:

Из реагирующих молекул образовалась молекула вещества а-А-Б-б и при этом выделилось вещество а-б. Молекула вещества а-А-Б-б может дальше вступать в реакцию с мономерами. Благодаря присоединению новых молекул мономера происходит рост полимерной цепи. При этом присоединение каждой новой молекулы сопровождается выделением вещества а-б.

В результате по химическому составу полимерные молекулы не­сколько отличаются от исходных мономеров.

В процессе поликонденсации получаются полимеры, имеющие ли­нейную, а также сетчатую структуру.

Процесс поликонденсации экзотермический, и поэтому, исходя из принципа Ле-Шателье, для сдвига равновесия слева направо не­обходимо проводить процесс при низкой температуре. Однако для уве­личения скорости процесса необходимо повысить температуру. Поэто­му для увеличения скорости поликонденсации вначале процесс про­водят при повышенной температуре, а затем ее постепенно снижают для сдвига равновесия реакции и тем самым получают продукт с более высоким молекулярным весом.

Поликонденсацию осуществляют как в присутствии катализатора, так и без него. Ее проводят в расплаве, растворе и на границе разде­ла двух фаз.

Поликонденсация в расплаве осуществляется при высокой температуре (220-280° С) в реакторе в атмосфере инертного газа. Таким образом обеспечивают высокую скорость процесса и уда­ление низкомолекулярных продуктов.

При поликонденсации в растворе мономеры раст­ворены в растворителе - реакция протекает с небольшой скоростью, не обеспечивается удаление низкомолекулярных продуктов. Этот способ не используется в промышленности.

Поликонденсация на границе раздела фаз заключается в том, что имеются две несмешивающиеся жидкости, в каждой из которых растворены исходные мономеры. Реакция поликон­денсации мгновенно протекает на границе раздела фаз с образованием пленки полимеров. Таким образом, продукты реакции выводятся из сферы реакции, что способствует протеканию реакции с высокой ско­ростью. При удалении пленки поверхность раздела фаз освобождает­ся и реакция продолжается.

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация (полиприсоединение). Это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). Большой вклад в изучении процессов полимеризации внесли отечественные ученые С.В.Лебедев, С.С.Медведев и др. и зарубежные исследователи Г.Штаудингер, Г.Марк, К.Циглер и др. При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: С С, С N, С=С, С=О, С=С=О, С=С=С, С=N, либо соединения с циклическими группами, способными раскрываться.

Полимеризация – самопроизвольный экзотермический процесс (), так как разрыв двойных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации.

При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи.

Ионная полимеризация также происходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служит электроноакцепторные соединения, в том числе протонные кислоты, например Н2SO4 и НСI, неорганические апротонные кислоты (SnCI4, ТiCI4, АICI3 и др.), металлоорганические соединения АI(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции:

при катионной полимеризации и

при анионной полимеризации

Полимеризация в массе (в блоке) – это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток – необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризация в суспензии) мономер находится в виде капель, диспрегированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от до м. Недостаток метода – необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты – в жидком или твердом состоянии. Метод применяется для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (Н2О, NН3, НСI, СН2О и др.), называется поликонденсацией. Существенный вклад в изучении процессов поликонденсации внесли российские ученые В.Коршак, Г.Петров и другие, из зарубежных ученых – У.Карозерс, П.Флори, П.Морган и др. Поликонденсация бифункциональных соединений получила название линейной, например:

2NH2 (СН2)5 - СООН

аминокапроновая кислота

NH2 – (CН2)5 - СО – NH – (СН2)5 – СООН + Н2О

NH2 – (СН2)5 – СО – NH (СН2)5 – СООН + NH2 – (CН2)5 - СООН

NH2 – (CH2)5 – СО – NH – (CH2)5 –CO – NH – (CH2)5 – COOH + H2O и т.д.

Конечным продуктом будет поли- -капроамид 2)5 n.

Такой полимер невозможно превратить в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе.

Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10 – 20 выше температуры плавления (размягчения) полимеров (обычно 200 – 400 ). Процесс начинается в среде инертного газа и заканчивается в вакууме.

При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта.

Межфазная поликонденсация происходит на границе раздела фаз газ – раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой.

Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поли- -капроамид (капрон), полигексаметиленадипинамид (найлон) -NH(CH2)6NHCO(CH2)4CO- n, полиэфиры (полиэтилентерефталат -(-ОС)С6Н4(СО)ОСН2СН2- n), полиуретаны -OROCONHR NHCO- n, полисилоксаны -SiR2-О- n, полиацетали -OROCHR- т, фенолоформальдегидные смолы